

Godot 4 for Beginners

Develop engaging 2D and 3D games with Godot 4’s scripting and
design features

Robert Henning

Godot 4 for Beginners
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Rohit Rajkumar

Relationship Lead: Neha Pande

Program Manager: Sandip Tadge

Content Engineer: Shreya Sarkar

Technical Editor: Tejas Mhasvekar

Copy Editor: Safis Editing

Indexer: Tejal Soni

Proofreader: Shreya Sarkar

Production Designer: Prashant Ghare

Growth Lead: Lee Booth

First published: August 2025

Production reference: 1250725

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83620-309-4

www.packtpub.com

This book is dedicated to my family, who are my biggest supporters. Know that with love and

encouragement, you can achieve anything. And Dad, I know that you would be proud of me.

– Robert Henning

Foreword

Creating games has never been this accessible, thanks in large part to powerful yet approachable

engines like Godot. However, diving into engines like Godot—while user-friendly—still involves

mastering a diverse set of skills, from the obvious ones like programming and math to the less

obvious ones like software architecture and game design. Even if you already know the inner

workings of a game engine, transitioning to another can be tedious.

This book, written by professional game development tutor Robert Henning, addresses exactly

this issue and eases readers into the vast field of game development. The cultivation of new skills

will be much easier through Robert’s teaching methods. Moreover, you will even enjoy the pro-

cess, as the book includes exercises and projects that offer early wins to boost your motivation.

Although I have never met Robert in person, he helped me become a professional game developer

in a very direct way—by creating tutorials and Godot Engine-related content on YouTube that

both aided and motivated me. At the time of writing this foreword, his channel has over 50,000

subscribers, which is a testament to the usefulness of his videos and his prolific will to help people

get started with game development in Godot.

Reading through these pages and doing the exercises transports me back to when I was a begin-

ner—a blank slate—and makes me excited to try out new things. Because if there is one thing

that is most important, it is this: always keep a beginner’s mindset and experiment. Every time

you learn something or do an exercise, take it to its limits. Change a value here and there until it

breaks, and then take a step back. It’s only when we leave the path that we see clearly why the

path is there in the first place.

So, I will hold you no longer. Go explore the path laid out by Robert in this excellent book. Look

at it as an adventure. Experiment freely, explore the possibilities, and find your own style. You

won’t regret it.

Sander Vanhove,

Lead Game Developer and Technical Artist, and Author of the bestselling book Learning GDScript by

Developing a Game with Godot 4

Contributors

About the author
Robert Henning has over 20 years of computer science education experience, specializing in

game development. He has taught game development using Scratch, Java with Greenfoot, Del-

phi, Construct 3, Unity, and Godot. A passionate advocate for Godot, Robert has promoted this

platform since the early versions.

Robert also runs a popular YouTube channel (https://www.youtube.com/@GameDevJourney)

offering tutorials and showcasing games made with Godot. His hands-on approach and dedication

to accessible learning have earned him a reputation as a trusted educator. Godot 4 for Beginners is

a culmination of his expertise, designed to guide newcomers through creating their own games

with clear, step-by-step instructions.

https://www.youtube.com/@GameDevJourney

About the reviewers
Deepak Jadhav is an experienced professional with extensive experience in game development

and project management, particularly in extended reality (XR) technologies. He excels in creating

immersive augmented reality (AR) and mixed reality (MR) experiences, delivering innovative

solutions across various industries. His expertise spans game programming, game engines (Godot,

Unity, and Unreal), AI system implementation, and applying these skills to enterprise applications.

Deepak holds a Master’s degree in Game Development and Project Management and a Bachelor’s

degree in Computer Technology, equipping him with technical and managerial skills for leading

complex XR and game development projects.

Ural, a game developer based in Turkey, holds a PhD in veterinary medicine. His journey in game

development began in high school with Python, leading him to work on diverse projects using

engines such as Godot, Unity, and Unreal Engine. He started using Godot as his first game engine

in 2018 and has solo-developed various games with it. Since 2021, he has been a lead developer at

Harmonia Games. Ural is passionate about exploring different workflows and game architectures.

He led the development of the PC game REM the Dreamer, released on Steam, and engineered his

own custom game engine from the ground up using C++.

Henrique “Ludonaut” Campos is an indie game developer and game designer working

in the industry for years. Started as a University teacher in 2015 in the Computer Graphics and

Artificial Intelligence chairs and working in the GDQuest team from 2018 to 2022, Henrique is

also an independent consultant for studios and schools. Under the alias of Ludonaut, Henrique

creates game development content on his YouTube channel creating games, assets, ebooks, and

courses that can be found in his itch.io profile. Being the author of the Game Development Pat-

terns with Godot 4 book, Henrique paved the way for Godot users to make reusable and scalable

code libraries for Godot Engine projects.

https://itch.io/

Table of Contentsviii

Table of Contents

Preface � xvii

Part 1: Learning How the Godot Engine Works � 1

Chapter 1: Let’s Get Godot-ing! � 3

Getting the most out of this book – get to know your free benefits �������������������������������������� 4

Next-gen reader • 4

Interactive AI assistant (beta) • 5

DRM-free PDF or ePub version • 5

Technical requirements ��� 6

What is Godot? ��� 6

What makes Godot so special? • 7

Setting up Godot 4 ��� 8

Creating a new project ��� 12

Making the scene dynamic • 23

Delta • 24

Continuing the bouncing label project • 25

Summary ��� 28

Chapter 2: Exploring the Godot Engine Interface � 29

Technical requirements ��� 29

Important terms �� 30

Table of Contents ix

Editing an existing Godot project �� 31

Creating an additional scene �� 35

Reacting to player input ��� 39

Scripting player reactions to input • 49

Hiding the label until the user provides input • 49

Input handling • 50

Summary ��� 52

Chapter 3: Introduction to 3D � 55

Technical requirements ��� 55

Creating 3D objects �� 56

Moving around the scene • 59

Creating a material for your object �� 62

Creating a material • 62

Applying a material • 65

Challenge yourself • 67

Creating lighting for the scene ��� 72

Directional light • 73

Omni light • 74

Spotlight • 78

Summary ��� 81

Chapter 4: Scripting with GDScript � 83

Technical requirements ��� 84

Understanding GDScript �� 84

Creating scripts �� 84

Understanding functions ��� 89

Understanding the game loop • 90

_ready() • 90

_process(delta) • 90

_physics_process(delta) • 91

Table of Contentsx

Understanding variables �� 93

Creating a variable • 93

Data types • 95

Naming conventions • 96

Understanding operators ��� 98

Order of operations • 99

Practice exercise • 100

Relational and comparison operators ��� 101

Practice exercise • 103

Using custom functions ��� 104

Arguments and parameters or function inputs • 105

Functions can return output • 106

Summary ��� 108

Part 2: Working with the Godot Engine � 111

Chapter 5: Understanding Vectors � 113

Technical requirements �� 113

What are vectors? �� 114

Coordinates in Godot • 118

Using vectors in Godot �� 119

Movement and positioning • 122

Vector addition • 123

Vector subtraction • 124

Vector multiplication • 125

Vector length • 127

Distance • 128

Normalization • 128

Summary �� 129

Table of Contents xi

Chapter 6: Creating a 2D Mini-Game in Godot – Part 1 � 131

Technical requirements �� 132

Building the level with a TileMap ��� 132

Creating and controlling the player �� 136

Adding the background • 136

Setting up the player animations • 139

Detecting collisions • 142

TileMap collisions • 143

Collision layers and collision masks • 144

Painting the tiles • 148

Adding the CharacterBody2D template for the Player script ��� 149

Cleaning the code ��� 154

Summary �� 155

Chapter 7: Creating a 2D Mini-Game in Godot – Part 2 � 157

Technical requirements ��� 158

Controlling player animations with code ��� 158

Helper variables • 159

Wall-sliding and double-jumping mechanics �� 160

Double-jump function • 160

Wall-slide function • 161

Checking conditions • 162

Detecting input • 162

Resetting the wall slide • 162

Limiting downward speed • 162

Animate function • 163

Falling through platforms ��� 165

Adding collectible items ��� 166

Strawberry scene (our collectible item) • 166

Implementing the Strawberry script • 170

Table of Contentsxii

Adding a patrolling enemy �� 175

Mushroom stomping • 180

Implementing level completion ��� 183

Summary ��� 186

Part 3: Building and Beyond – Your Game Development
Journey � 189

Chapter 8: Creating a 3D Mini-Game in Godot – Part 1 � 191

Technical requirements �� 192

Working in 3D: a new dimension in Godot �� 192

Building a 3D character ��� 192

Creating a level design ��� 196

Creating a level component • 197

Example: creating a grass platform • 197

Handling irregular collision shapes • 199

Creating the level layout • 201

Organizing the level scene • 202

Working with a Character Controller script ��� 203

Using variables ��� 204

Linking the Player script with the camera • 205

Alternative method for adding reference variables • 207

Exploring functions �� 208

Creating an input map • 209

Implementing player controls and actions • 211

Handling game events and feedback • 212

Implementing a camera controller ��� 215

Running tests ��� 220

Summary �� 221

Table of Contents xiii

Chapter 9: Creating a 3D Mini-Game in Godot – Part 2 � 223

Technical requirements ��� 224

Exploring collectibles �� 224

Creating the Gem scene • 224

Adding the Gem script • 225

Introducing obstacles �� 230

Creating the Cannon scene • 230

Creating the Ball scene • 231

Writing the Ball script • 233

Writing the Cannon script • 233

Completing our level �� 235

Creating the Flag scene • 235

Changing scenes • 236

Polishing our level ��� 237

Setting the background color • 238

Adding particle effects • 238

Creating the smoke scene • 238

Adding audio to our level • 242

Using the sine function • 246

Summary ��� 247

Chapter 10: Adding Game Juice � 249

Technical requirements ��� 250

Understanding game juice ��� 250

Foundations of juicing: animation and audio • 251

Visual feedback (animation and particle effects) • 251

Audio feedback (music and sound effects) • 251

Implementing a health bar HUD ��� 251

Developing a heart-based health system • 252

Updating the HUD in the Level script • 255

Table of Contentsxiv

Adding a hit animation �� 257

Creating a confetti cannon effect ��� 262

Scripting the confetti cannon • 268

Adding audio and sound effects ��� 270

Implementing a sound effect • 272

Summary ��� 275

Chapter 11: Understanding Game Design � 277

Technical requirements �� 277

Understanding the foundations of game design �� 278

Introducing the game design document • 279

Why is documentation necessary for your game design? • 279

Understanding the guiding principles for the GDD • 280

Think visually • 281

Keep it brief and clear • 281

Stay organized • 281

Learn by example • 282

Exploring the Game Design Document �� 282

Title: what will you call your game? • 282

Team: who will build or develop the game? • 282

Status: what is the status of the project? • 282

Statement of concept: what is your game about in one sentence? • 283

Expanded concept paragraph and USP: what makes your game unique, and how can you

describe it in more detail? • 283

Genre: what type of game are you making? • 284

Audience: who is this game for? • 284

Experience: what should the player feel or experience while playing? • 284

Anchor points: what are the core ideas, inspirations, or reference points? • 285

Platform: which platforms will the game be released on? • 285

Review competition: what similar games exist, and how will yours stand out? • 285

Table of Contents xv

Assets: what art, sound, and other resources will your game need? • 285

Monetization: how will the game generate revenue, if at all? • 286

Describing game elements of the GDD in detail ��� 286

Player progression and objectives • 286

Game world and background • 287

User interface • 288

Audio and visual style • 290

Game systems and features • 291

Software requirements • 292

Game objects • 294

Detailed asset list • 295

Prototypes • 296

Playtesting • 297

Archive • 298

Current concerns and considerations • 298

Implementation details • 299

Summary �� 300

Chapter 12: Where to Next? � 301

Technical requirements ��� 302

Utilizing educational resources �� 302

YouTube • 302

Blogs • 303

Exploring opportunities for practice �� 304

Participating in game jams • 305

Community and networking �� 306

Why networking matters • 306

Where to build your network • 306

People to follow • 307

Table of Contentsxvi

Utilizing tools and assets ��� 307

Tools • 307

Resources • 308

Building your portfolio �� 309

Developing game ideas �� 310

Design guide for your next project �� 311

Further reading ��� 313

Summary �� 315

Chapter 13: Unlock Your Book’s Exclusive Benefits � 317

How to unlock these benefits in three easy steps �� 317

Step 1 • 317

Step 2 • 318

Step 3 • 318

Need help? • 319

Other Books You May Enjoy � 323

Index � 327

Preface

Hello and welcome to Godot 4 for Beginners! My name is Robert Henning, and I was once a Godot

beginner myself, so I know how it feels to be searching for resources to help you learn how to make

games with the Godot Engine. It was specifically because of the lack of good Godot resources for

beginners that I wrote this book.

This book takes a hands-on, step-by-step approach to teaching game development, beginning

with the basics of downloading and installing the Godot 4 game engine and gradually building

your knowledge through a series of progressively more complex topics. Each chapter is designed

to be practical and interactive, allowing you to immediately apply what you’ve learned through

real-world examples and projects. The book is structured to ensure that even those with no prior

programming or game development experience can follow along and succeed.

Throughout this book, you will get familiar with the Godot 4 interface and the tools it provides,

while also learning the foundational game development philosophy behind Godot’s unique sys-

tem of nodes, scenes, signals, and scripts. You will use GDScript, Godot’s scripting language,

and explore both 2D and 3D workflows. Along the way, you’ll build character controllers, design

interactive elements such as enemies and hazards, implement scoring systems and collectibles,

and discover how to polish your projects for a more professional finish. The book also guides you

through the fundamentals of game design, helping you understand not only how to build a game

but also how to craft a fun and engaging experience.

By the end of this book, you will have a solid understanding of the Godot 4 game engine and its

interface and be able to create both 2D and 3D games, manipulate lighting, script with GDScript,

and implement key game elements such as players, enemies, and collectibles. You will also be

skilled in designing and constructing engaging game levels, tracking scores, and managing game-

over states, empowering you to bring your own game ideas to life.

Now it’s your turn to get started. With curiosity, patience, and practice, you will be building your

very own games before you know it. Let’s begin your journey into game development!

Preface xix

Who this book is for
This book is ideal for anyone new to game development who wants to explore the powerful and

accessible Godot engine. Whether you’re an aspiring game developer, an indie creator looking

for a free and open source tool, a student eager to build interactive projects, or an artist curious

about bringing your ideas to life, this book will provide you with a solid foundation in using Godot

4. With clear explanations and hands-on projects, it’s designed to help you make the transition

from curiosity to creation—no prior experience required.

Additionally, students wanting to learn game development fundamentals, educators seeking a

comprehensive resource to teach the basics, and aspiring game developers aiming to bring their

game ideas to life using the open source, beginner-friendly Godot game engine will find this

book invaluable.

Whether you’re starting completely from scratch or already know a few basics, this book walks

you through Godot 4 with clear, step-by-step guidance. No prior coding experience is required—

although a rudimentary grasp of concepts such as variables, loops, and conditionals can help,

every essential programming idea is explained from the ground up within these pages.

What this book covers
Chapter 1, Let’s Get Godot-ing!, explores the history and core features of Godot 4.0 and aims to

provide you with the knowledge to install, launch, and create your first project in the engine.

Chapter 2, Exploring the Godot Engine Interface, explores the fundamental features of the interface

and helps you to edit your first project in Godot 4. You will also understand the node and scene

design philosophy that underscores Godot.

Chapter 3, Introduction to 3D, explains how to build and illuminate a simple 3D environment and

helps you to gain confidence in navigating Godot’s 3D workspace.

Chapter 4, Scripting with GDScript, provides the foundational knowledge to script essential game

mechanics and confidently control the logic and flow of your game.

Chapter 5, Understanding Vectors, explains what vectors are and why they play a vital role in game

mechanics. You’ll learn how to use vectors effectively within the Godot engine.

Chapter 6, Creating a 2D Mini-Game in Godot – Part 1, details the creation of an interactive, fully

playable platformer level and explains how these components work together to form the foun-

dation of many platformer games. This chapter includes creating the level design with TileMap,

developing the player character, scripting the player character, and learning about clean code.

Prefacexx

Chapter 7, Creating a 2D Mini-Game in Godot – Part 2, explores how to bring your game mechanics

to life with code and create a more dynamic and engaging platformer experience. This chapter

includes animating the player and programming platform game mechanics, collectible items,

patrolling enemies, and level completion.

Chapter 8, Creating a 3D Mini-Game in Godot – Part 1, explains how to create reusable 3D scenes,

control your player character, and design levels that are both visually appealing and functional.

This chapter includes creating a 3D character, designing a level, working with a character con-

troller script, and implementing a camera controller.

Chapter 9, Creating a 3D Mini-Game in Godot – Part 2, continues the work started in the previous

chapter and includes final touches, including adding a power-up, introducing obstacles, and

polishing the level.

Chapter 10, Adding Game Juice, details how small changes can dramatically improve the feel of your

game. You’ll gain practical experience in implementing visual and audio feedback that enhances

player immersion, making your game more enjoyable and satisfying to play.

Chapter 11, Understanding Game Design, expounds on the value of thoughtful game design in

streamlining development, reducing costly errors, and improving player satisfaction.

Chapter 12, Where to Next?, provides a curated list of resources to deepen your knowledge, expand

your skills, and connect with other developers. You’ll also discover how to stay motivated, stay

informed about the latest trends, and build your presence in the game development community.

To get the most out of this book
To fully engage with the exercises and examples provided in this book, you will need to download

and install Godot Engine 4.3. This version of the engine introduces key features and updates

that are essential for understanding and implementing the techniques we cover. Whether you’re

new to Godot or have experience with earlier versions, it’s important to work with version 4.3 to ensure

compatibility with the projects and concepts discussed throughout this book.

Software/hardware covered in the book Operating system requirements

Godot Engine 4.3 Windows, macOS, or Linux

Preface xxi

You can easily download Godot Engine 4.3 from the official website at godotengine.org. While

version 4.4.1 is now available, using 4.3 is recommended for full compatibility with the examples

in this book. That said, everything should continue to work as expected in the latest version.

The installation process is straightforward, and the engine is available on Windows, macOS,

and Linux. Be sure to follow the instructions for your operating system, and once it is installed,

familiarize yourself with the interface using Chapter 1. By using the same tools and environment

that we explore in this book, you will have the best learning experience and will be able to follow

along with the code examples smoothly.

If you are using the digital version of this book, we advise you to type the code yourself or

access the code from the book’s GitHub repository (a link is available in the next section).

Doing so will help you avoid any potential errors related to the copying and pasting of code.

Note that the author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole

aim of enhancing the language and clarity within the book, thereby ensuring a smooth reading

experience for readers. It’s important to note that the content itself has been crafted by the author

and edited by a professional publishing team.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Godot-4-for-Beginners.

We also have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781836203094

Code in Action
The Code in Action videos for this book can be viewed at https://packt.link/cFyK6

Logo attribution
Note that the Godot logo is used under the CC BY 4.0 license. Copyright © Godot Engine devel-

opers. Used with credit, not endorsement.

godotengine.org
https://github.com/PacktPublishing/Godot-4-for-Beginners
https://github.com/PacktPublishing/Godot-4-for-Beginners
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://packt.link/cFyK6

Prefacexxii

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and X handles. For example: “Now press Ctrl

+ S to save the scene as player.tscn in our Scenes folder.”

A block of code is set as follows:

extends Node2D

@onready var update_health_hud = $HUD

@onready var player = $Player

@onready var strawberries = $Collectibles

func _ready():

 player.level_strawberries = strawberries.get_child_count()

func _process(delta):

 update_health_hud.frame = player.get_hearts()

When we wish to draw your attention to a command-line input or output in a set of steps, the

relevant lines or items are set in bold:

extends Node2D

var health : int = 100

var jump_strength : float = 220.5

var is_dashing : bool = true

var player_name : String = “Riptide”

var player_level : int = 23

var player_exp : float = 123.45

var has_key : bool = false

var spike_damage : int = 10

On Linux, run the following command in the terminal:

Unzip Godot_v4.3-stable_linux.x86_64.zip -d Godot

Preface xxiii

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in text like this. For example: “Enable Rotate Y and Disable

Z in the Particle Flags settings.”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packt.com/submit-errata
http://authors.packt.com/

Prefacexxiv

Share your thoughts
Once you’ve read Godot 4 for Beginners, we’d love to hear your thoughts! Please click here to go

straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/godot-4-game-dev

https://packt.link/r/1836203098
https://packt.link/r/1836203098
https://packt.link/godot-4-game-dev

Part 1
Learning How the Godot

Engine Works
In this first part of the book, you’ll build a strong foundation in using the Godot game engine.

We’ll begin by exploring Godot’s origins and what makes it a unique and powerful tool for game

development. Then, you’ll get hands-on with the engine’s interface, learning how scenes, nodes,

and the editor all work together. You’ll also take your first steps into 3D game development and

dive into scripting with GDScript, Godot’s intuitive, Python-like language. By the end of this part,

you’ll be ready to begin creating interactive games with confidence.

This part of the book includes the following chapters:

•	 Chapter 1, Let’s Get Godot-ing!

•	 Chapter 2, Exploring the Godot Engine Interface

•	 Chapter 3, Introduction to 3D

•	 Chapter 4, Scripting with GDScript

1
Let’s Get Godot-ing!

In this chapter, we’ll explore the history and core features of Godot 4.0, a game development

engine renowned for its versatility and accessibility. Whether you’re an aspiring indie developer

or a seasoned creator looking for a new tool, understanding what makes Godot unique will set

the foundation for your journey into game development.

This chapter serves two main purposes. The first is to introduce you to Godot’s background and

key capabilities, showing why it has become a popular choice in the game development commu-

nity. Next is to guide you through setting up Godot 4.0 and creating your first project, ensuring

you have the tools and confidence to begin crafting your own games.

In this chapter, we’re going to cover the following main topics:

•	 What is Godot?

•	 Setting up Godot 4

•	 Creating a new project

By the end of this chapter, you’ll not only have grasped the essential features that make Godot

stand out, but also have the knowledge to install, launch, and create your first project in the

engine. These are fundamental steps that lay the groundwork for everything we’ll accomplish

in later chapters.

Let’s Get Godot-ing!4

Getting the most out of this book – get to know your
free benefits
Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge

your learning journey and help you learn without limits.

Here’s a quick overview of what you get with this book:

Next-gen reader

Figure 1.1: Illustration of the
next-gen Packt Reader’s

features

Our web-based reader, designed to help you

learn effectively, comes with the following

features:

 Multi-device progress sync: Learn from

any device with seamless progress sync.

 Highlighting and notetaking: Turn your

reading into lasting knowledge.

 Bookmarking: Revisit your most important

learnings anytime.

 Dark mode: Focus with minimal eye strain

by switching to dark or sepia mode.

Chapter 1 5

Interactive AI assistant (beta)

Figure 1.2: Illustration of Packt’s
AI assistant

Our interactive AI assistant has been trained

on the content of this book, to maximize

your learning experience. It comes with the

following features:

 Summarize it: Summarize key sections or

an entire chapter.

 AI code explainers: In the next-gen Packt

Reader, click the Explain button above each

code block for AI-powered code explanations.

Note: The AI assistant is part of next-gen Packt

Reader and is still in beta.

DRM-free PDF or ePub version

Figure 1.3: Free PDF and ePub

Learn without limits with the following perks

included with your purchase:

 Learn from anywhere with a DRM-free PDF

copy of this book.

 Use your favorite e-reader to learn using a

DRM-free ePub version of this book.

Let’s Get Godot-ing!6

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

Technical requirements
You can find the example project and code for this book in the GitHub repository:

https://github.com/PacktPublishing/Godot-4-for-Beginners

This chapter’s code files are available here: https://github.com/PacktPublishing/Godot-4-
for-Beginners/tree/main/ch1/godotintro

Visit this link to check out the video of the code being run: https://packt.link/RjbW3

What is Godot?
The short answer is that Godot is a game engine. It was originally created in 2007 by Juan Linietsky

and Ariel Manzur as an in-house tool for various Argentinian studios. Your next questions might

be, “What exactly is a game engine?” and “What makes Godot so special?”

Well, making a game is hard—really hard! There are countless moving parts that all need to work

together perfectly. While it’s possible to build everything from scratch, most developers rely on

a game engine to handle the heavy lifting.

So, a game engine is a software framework that simplifies game development. It provides the

core tools and systems for building a game—such as rendering, physics, input handling, and

asset management—so that developers can focus more on gameplay, story, and design, rather

than low-level technical code.

http://packtpub.com/unlock
https://github.com/PacktPublishing/Godot-4-for-Beginners
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch1/godotintro
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch1/godotintro
https://packt.link/RjbW3

Chapter 1 7

What makes Godot so special?
There are many reasons why Godot has become a popular choice for both beginner and experienced

game developers. Here are some of the core features that make this engine stand out from the rest:

•	 Open source and free: In 2014, Godot was released as open source under the MIT license.

That means it’s completely free to use—even for commercial projects—and developers

have full access to the source code. This makes Godot highly customizable and commu-

nity-driven.

•	 Versatile scene system: One of Godot’s most defining features is its scene system. Every-

thing in Godot is a scene—and scenes are made up of nodes. Scenes can also be nested

inside other scenes, making it easy to build complex, reusable, and modular components.

This structure makes organizing and scaling a game project incredibly intuitive.

•	 Powerful 2D and 3D support: Godot includes dedicated tools for both 2D and 3D devel-

opment. Whether you’re making a pixel-art platformer or a fully-fledged 3D experience,

Godot provides specialized workflows for both dimensions. While other engines also sup-

port both, Godot’s 2D system in particular is often praised for its precision and flexibility.

•	 Resources—the other side of the coin: Alongside scenes and nodes, Godot uses something

called resources—and they’re everywhere. A texture on a sprite is a resource. The audio

you play is a resource. Even the path in a Path2D node is a resource. Resources are data

containers that can be reused across your project, edited in the inspector, or saved and

loaded from disk. They promote consistency, reduce duplication, and keep your projects

lightweight and organized.

•	 Lightweight and cross-platform: Godot is lightweight and quick to install and runs

smoothly even on older machines. This low system requirement is a huge win for acces-

sibility and inclusion—anyone can start making games without needing a high-end PC.

Plus, when your game is finished, you can export it to a wide variety of platforms, including

Windows, macOS, Linux, Android, iOS, and HTML5.

•	 Thriving community and active development: Godot has a friendly, growing community

of developers and educators. Whether you’re just starting out or are an experienced coder,

there’s plenty of support through forums, Discord channels, tutorials, and documentation.

The engine is under continuous development with regular updates and an open roadmap.

Let’s Get Godot-ing!8

Now that you’ve learned about the key features that make Godot such a powerful and begin-

ner-friendly game engine—from its flexible node and scene system to its vibrant open-source

community—you have a strong understanding of why it is a great choice for your game devel-

opment journey.

It’s time to move from theory to practice!

In the next section, we’ll guide you through downloading and installing Godot, and help you run

the engine for the very first time. Soon, you’ll be setting up your own projects and building your

first games step by step. Let’s get started!

Setting up Godot 4
To download the latest version of Godot 4, follow these steps:

1.	 Go to Godot’s website (https://www.godotengine.org) and click on the Download Latest

button, shown in Figure 1.4. Note that version 4.3 was the version in use at the time of

writing (see Preface for details).

Figure 1.4 – The download page for Godot Engine 4 for Windows

2.	 The website should detect your operating system platform and take you to the correct

download. Click on the Godot Engine button rather than the .NET one:

https://www.godotengine.org

Chapter 1 9

Figure 1.5 – The browser has detected the Windows operating system

3.	 If your platform cannot be detected, you can choose from one of the supported platforms

by scrolling further down the page:

Figure 1.6 – Choose your own platform from the available options

4.	 Once the download is complete, it’s time to create our folder structure.

5.	 On Windows, open the ZIP file. The main executable will be named something such as

Godot_v4.3-stable_win64.exe.

•	 On macOS, double-click the ZIP file

•	 On Linux, run the following command in the terminal:

Unzip Godot_v4.3-stable_linux.x86_64.zip -d Godot

Let’s Get Godot-ing!10

6.	 Extract this file to a folder on your PC. I recommend naming the folder Godot4.

7.	 Within this folder, create another folder called Godot 4 Projects. This is the folder where

you will store all your projects made with Godot 4:

Figure 1.7 – Godot folder structure

8.	 Time to launch Godot! Right-click on the .exe file and choose Pin to Start to have Godot

available in the Start menu:

Figure 1.8 – How to pin to Start

Chapter 1 11

9.	 You can also click on Show more options and then choose Pin to taskbar so that Godot

is always ready and waiting at the bottom of your screen:

Figure 1.9 – Show more options and Pin to taskbar

10.	 Double-click on the extracted .exe file within the Godot 4 folder to launch Godot 4!

Godot is up and running. Our next step is to create our first project—our wonderful adventure

in game development starts now!

Let’s Get Godot-ing!12

Creating a new project
Having followed the steps in the previous section, you are now presented with the Godot Project

Manager:

Figure 1.10 – The Godot Project Manager

This is always the first window you see when you launch Godot. Here, you can create, remove,

import, edit, and play game projects.

Chapter 1 13

Because of all the black ink needed to print images in dark mode, we will do our bit to save the

planet by switching to light mode. There is no difference other than appearance. To do that, fol-

low these steps:

1.	 Click on the Settings button in the top-right corner:

Figure 1.11 – The Project Manager Settings button

2.	 Now, change the Interface Theme dropdown to Light:

Figure 1.12 – Changing to the Light theme in the Quick Settings menu

Let’s Get Godot-ing!14

Now, let’s now walk through the steps to set up a new project in Godot 4:

1.	 Click on the + Create button in the top-left corner to create a new project:

Figure 1.13 – How to create a new project in the Godot Project Manager

2.	 We are now presented with a new window in which we can adjust the details of the project:

Figure 1.14 – The Create New Project sub-menu

Chapter 1 15

3.	 The next step is to give our project a name. Let’s call it GodotIntro.

Also, ensure that Project Path points to the Godot 4 Projects folder we created earlier

and that the Create Folder button is toggled on:

Figure 1.15 – Initial settings for our new Godot project

4.	 This will create a new folder within Godot 4 Projects named GodotIntro. Creating a

new folder for each new project in Godot will help us keep everything organized.

You can leave Renderer in Compatibility mode. Each renderer option is explained here:

•	 Forward+ is a renderer that is aimed at improving the rendering of lights on

desktop platforms. This is not recommended for mobile development as it is not

efficient.

•	 Mobile uses a more efficient approach for lighting that is intended for mobile

platforms, but can also run on a desktop. However, this renderer does not provide

high-end graphical features.

•	 Compatibility has even fewer high-end graphical features than Mobile, but it

will run on most hardware.

Let’s Get Godot-ing!16

5.	 Click on Create & Edit, and you will be presented with the following window:

Figure 1.16 – The main Godot engine editor interface

6.	 By default, Godot opens in 3D view. We can change this using the view menu at the top;

however, Godot will change the view automatically once we add our first node.

Figure 1.17 – The context menu to switch views

From here, we will create our first little project and then take a closer look at the interface in the

next chapter:

1.	 Click on 2D Scene in the top left of the screen:

Figure 1.18 – The Scene window

Chapter 1 17

2.	 Clicking this button creates Node2D as the root node of our scene. You can see it in the

Scene window on the left-hand side. We will rename it by selecting it and pressing F2.

Name it Main as it will be our main node for now:

Figure 1.19 – Renaming Node2D to Main

3.	 It’s important to get into the habit of being organized from the beginning. In the

FileSystem window at the bottom left of the editor, create a new folder and call it Scenes.

Do this by right-clicking anywhere in the FileSystem window and selecting New Folder…:

Figure 1.20 – Creating a new folder in the FileSystem window

4.	 Now, save the scene as main.tscn by pressing Ctrl + S and choosing the Scenes folder

that you just created:

Figure 1.21 – Saving the main scene in the Scenes folder

Let’s Get Godot-ing!18

5.	 Add a Label node as a child of Main (which is the Node2D we created earlier):

Figure 1.22 – Click the + button to add a new node

6.	 Now, search for the Label node:

Figure 1.23 – Searching for the Label node

Chapter 1 19

7.	 Select it once found, and you will see it added to your scene tree:

Figure 1.24 – The Label node in the editor

8.	 Now, rename the Label node to GreetingsLabel:

Figure 1.25 – Renaming the Label node

9.	 With GreetingsLabel selected, on the right-hand side of the inspector, we can see the

properties of the Label node. Enter your greeting in the Text property:

Figure 1.26 – Editing the Text property of the Label node in the inspector

Let’s Get Godot-ing!20

We can now run our scene to see the output by pressing F6 as this will run the current

scene. Another way to launch the project is to press F5. A window will appear asking us

to choose the main scene. Since we only have one scene, we will press the Select Current

button. However, if we have multiple scenes, we could choose which one we want as the

first scene that runs:

Figure 1.27 – Selecting the main scene of the project

10.	 When the project launches, you will see your greeting in the top-left corner of the screen:

Figure 1.28 – The output of our project

11.	 We can change the value of the Text property of the Label node in the inspector or using

code.

A script allows us to program custom behavior for our nodes. We use it to add logic to our

node, such as playing sound effects, moving a character, or changing text.

Chapter 1 21

12.	 Before we add a script to our Label node, let’s create a folder for scripts in FileSystem.

Right-click in FileSystem, select New Folder, and call it Scripts:

Figure 1.29 – Adding a Scripts folder to our project

13.	 Right-click GreetingsLabel and select Attach Script…:

Figure 1.30 – Attaching a script to a node

Let’s Get Godot-ing!22

14.	 A window pops up. Don’t change anything for the moment or worry too much about all

the options. Just take note that the language is GDScript and the script name is created

for us. Check the path and, if necessary, change it to your Scripts folder:

Figure 1.31 – The Attach Node Script menu

15.	 Edit the script so that it matches the following code and launch the project again by

hitting the play button:

extends Label

Called when the node enters the scene tree for the first time.

func _ready():

 text = "Go Go Godot!"

Called every frame. 'delta' is the elapsed time since the previous
frame.

func _process(delta):

 pass

Note that now, the output of the project has changed from Hello World! to: Go Go Godot!.

Chapter 1 23

Finally, we can make the scene more dynamic by making the label bounce around the screen like

the famous DVD screensaver!

Making the scene dynamic
To do this, we need to break the problem into smaller parts:

1.	 Give the label an initial velocity (speed and direction).

2.	 Find out the dimensions of the screen.

3.	 Find out the size of the label.

4.	 Test whether the label has reached the left or right edge and reverse direction.

5.	 Test whether the label has reached the top or bottom edge and reverse the direction.

6.	 Repeatedly update the label’s position so that it moves.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Let’s Get Godot-ing!24

The velocity variable controls both the speed and direction of movement. Because it is a Vector2,

we can pass through both the x and y values in one container.

In this example, we’re setting the initial speed to 150 pixels per second along the x axis (to the

right, because it’s positive) and 120 pixels per second along the y axis (downward, since Godot’s

coordinate system starts from the top-left corner).

Add these lines starting from the second line in the program:

var xVelocity = 150 #150 pixels per second to the right

var yVelocity = 120 #120 pixels per second downwards

var velocity = Vector2(xVelocity, yVelocity) #Initial speed and direction

To make the label move, we need to continuously update its position at each frame. The

_process(delta) function runs every frame, making it the perfect place to handle updates like

this. By adding a line of code that adjusts the label’s position inside _process(), we can create

smooth, ongoing movement.

Add the following code as the first line inside the _process() function and run the game. You

will see the label move diagonally down and to the right!

position = position + velocity * delta

In the preceding line, we repeatedly add the current position to the value of the velocity multiplied

by delta. Here, delta is the amount of time that has passed since the previous frame and is a way

to make sure that movement is smooth and consistent on all hardware.

You’ve now taken the first steps toward making your text move—just like the classic DVD logo!

Before we go any further and make the motion smooth and consistent, it’s important to under-

stand a key concept that controls how things behave over time in Godot: delta.

Let’s take a moment to explore what delta is and why it’s so important.

Delta
When we make something move in a game, we usually want it to move at a consistent speed—

such as 150 pixels per second. But here’s the tricky part: not all computers run games at the same

speed. Some may run at 60 frames per second, while others might run slower or faster, depending

on their hardware.

Chapter 1 25

This is where delta comes in.

delta is a small number that tells us how much time has passed since the last frame was drawn.

If your game is running fast, delta might be something such as 0.016 (about 1/60th of a second).

If it’s running slower, delta will be a bit bigger, such as 0.03.

By multiplying the movement speed by delta, we’re saying the following:

“Move this object based on how much time has actually passed, not how many frames have gone by.”

This means the object will move at the correct speed per second, no matter how many frames

your computer is managing to draw.

So, instead of moving 150 pixels every frame (which would be way too fast!), we move 150 × delta

pixels per frame, which adjusts automatically based on performance.

Continuing the bouncing label project
Bringing this back to our bouncing label project, the next step is to set up some important infor-

mation about the screen and the label itself. This will let us detect when the label hits the edges

and needs to bounce.

Now, we should add variables to store the screen size and the size of the label. It’s important to

understand that we cannot determine these values until the scene has loaded.

The first function to run once the scene is ready is the _ready() function. So, we should initialize

(assign values to) our variables there. First, add the variables to our collection at the top and then

assign them as the first lines in the _ready() function after setting the text:

var xVelocity = 150 #150 pixels per second to the right

var yVelocity = 120 #120 pixels per second downwards

var velocity = Vector2(xVelocity, yVelocity) # Initial speed and direction

var screen_size_x #screen horizontal dimension

var screen_size_y #screen vertical dimension

var label_size_x #label width

var label_size_y #label height

Let’s Get Godot-ing!26

Now, assign values to these variables in the _ready() function as follows:

func _ready():

 text = "Go Go Godot!"

 # Get the screen size (viewport size)

 screen_size_x = get_viewport_rect().size.x

 screen_size_y = get_viewport_rect().size.y

 label_size_x = size.x

 label_size_y = size.y

All that is left to do now is test to see whether the label has reached the left, right, top, or bottom

edge of the screen, and if it has, turn it around.

We do this in the _process() function after setting the direction. Begin with a test for the left

and right screen edges, as follows:

Bounce off left/right edges

if position.x < 0 or position.x + label_size_x > screen_size_x:

 velocity.x *= -1

This line checks whether the label has hit the left or right edge of the screen, and if so, it makes

the label bounce by reversing its horizontal direction.

Technically, our bouncing works and we could leave it there, but there are rare edge cases in which

the label could move past the edge of the screen in one frame and the direction reverses, but we

are already beyond the edge, so the label could get stuck or jitter. To prevent this, we can use a

built-in method that clamps a value between a minimum and maximum value:

Bounce off left/right edges

if position.x < 0 or position.x + label_size_x > screen_size_x:

 velocity.x *= -1

 position.x = clamp(position.x, 0, screen_size_x - label_size_x)

The check is similar for the top and bottom edges:

Bounce off top/bottom edges

if position.y < 0 or position.y + label_size_y > screen_size_y:

 velocity.y *= -1

 position.y = clamp(position.y, 0, screen_size_y - label_size_y)

Chapter 1 27

The full code for the bouncing label is presented here:

extends Label

var xVelocity = 150 #150 pixels per second to the right

var yVelocity = 120 #120 pixels per second downwards

var velocity = Vector2(xVelocity, yVelocity) # Initial speed and direction

var screen_size_x #screen horizontal dimension var screen_size_y

#screen vertical dimension

var label_size_x #label width

var label_size_y #label height

func _ready():

 text = "Go Go Godot!"

 # Get the screen size (viewport size)

 screen_size_x = get_viewport_rect().size.x

 screen_size_y = get_viewport_rect().size.y

 label_size_x = size.x

 label_size_y = size.y

func _process(delta):

 position = position + velocity * delta

 # Bounce off left/right edges

 if position.x < 0 or position.x + label_size_x > screen_size_x:

 velocity.x *= -1

 position.x = clamp(position.x, 0, screen_size_x - label_size_x)

 # Bounce off top/bottom edges

 if position.y < 0 or position.y + label_size_y > screen_size_y:

 velocity.y *= -1

 position.y = clamp(position.y, 0, screen_size_y - label_size_y)

And there you have it — your own version of the classic bouncing DVD logo! Now that you’ve built

your first simple animation in Godot, you’re ready to dive even deeper into creating interactive

and dynamic games.

Let’s Get Godot-ing!28

Summary
In this chapter, we learned about the history of Godot and its node and scene design philosophy.

We downloaded Godot and ran it. We created our first project and produced our first output to

the game window. We also made the scene dynamic by working with the position and velocity

of the label. We also learned about screen dimensions and how to clamp them between a range,

as well as the important role played by the delta variable.

In the next chapter, we will take a closer look at the Godot editor interface and how to use the

tools provided by it.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

2
Exploring the Godot Engine
Interface

In this chapter, you will edit your first project in Godot 4 and explore the fundamental features of

the interface. You will also gain a deeper understanding of the node and scene design philosophy

that underscores Godot. It is fundamental to using Godot day in and day out to understand how

it is intended to be used.

In this chapter, we’re going to cover the following main topics:

•	 Important terms

•	 Editing an existing Godot project

•	 Creating an additional scene

•	 Reacting to player input

By the end of the chapter, you’ll be able to create new projects, build scenes, and navigate the

interface with ease—essential skills for any game developer.

Technical requirements
This chapter’s code files are available here in the book’s GitHub repository: https://github.com/
PacktPublishing/Godot-4-for-Beginners/tree/main/ch2/godotintro

Visit this link to check out the video of the code being run: https://packt.link/2R1xc

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch2/godotintro
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch2/godotintro
https://packt.link/2R1xc

Exploring the Godot Engine Interface30

Important terms
This is an important section. Before we dive into the chapter and come across terms that are

unknown to us, let’s take a quick look at them:

•	 Nodes: Nodes are the basic building blocks of Godot 4 scenes. Each node represents a

single object in your game world, such as a sprite, a sound effect, a UI element, and so on.

Multiple nodes usually form a hierarchy, often with parent nodes controlling the behavior

of their child nodes.

When working with nodes, we can press Q, W, E, and S to use the different tools:

•	 Q – Select tool: Allows us to select a node and position it in the Viewport

•	 W – Move tool: Allows us to move the node along the various axes

•	 E – Rotate tool: Allows us to rotate an object on the various axes

•	 S – Scale tool: Allows us to resize an object on the various axes

Each node has properties that determine its behavior and appearance. For example, a

sprite node has properties such as Texture, Position, and Scale, as shown in Figure 2.1:

Figure 2.1 – Some of the properties of a Sprite2D node

Chapter 2 31

•	 Scenes: Scenes are collections of nodes. They could make up a level, menu, character, en-

emy, or any other part of a game. A scene can be saved as a separate file and loaded into

your game as needed using instancing.

•	 Scripts: Scripts are an essential part of game development. They allow you to create cus-

tom actions and interactions that make your game unique.

To visualize how nodes are combined to form scenes, look at Figure 2.2, which shows

Strawberry, which is a collectible item. It is made up of an Area2D node, a Collision-

Shape2D node, and an AnimatedSprite2D node. Together, they make the Strawberry

scene.

Figure 2.2 – A combination of nodes forming a scene

Let’s get into the chapter!

Editing an existing Godot project
We created a Godot project in the previous chapter, and when we launch Godot, we can see it

in the Project Manager window, and we can reopen it by selecting Edit or pressing Ctrl + E and

then double-clicking on the name of our project: GodotIntro:

Figure 2.3 – Our existing Godot project from Chapter 1

Exploring the Godot Engine Interface32

The Godot editor will open and display the last thing you were working on. In my case, it is the

Script view. Change the view to 2D by clicking on 2D at the top of the screen:

Figure 2.4 – Change to the 2D view by clicking on 2D at the top of the screen

Now we can take a closer look at the main features of the Godot editor. Your screen should now

look as it does in Figure 2.5:

Figure 2.5 – An overview of the Godot Interface

Chapter 2 33

The most used parts of the editor are labelled 1 to 4:

1.	 The scene tree area shows all the nodes that make up the current scene. We can see our

Main node (Node2D) and our GreetingsLabel (Label node).

2.	 The FileSystem area shows all the files that are part of our project. We can see the Scenes

and Scripts folders that we made.

3.	 Here, we see the Viewport. Think of it as what is within the imaginary camera frame. Here,

we will place our nodes within the 2D space in the scene.

4.	 On the far right is the Inspector area. With it, you can view the properties of the currently

selected node. You can also find many settings within sub-menus. As an example, you

could click on the Transform property to unfold settings for Position, Rotation, and Scale.

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use

the search bar to find this book by name. Double-check the edition shown to

make sure you get the right one.

http://packtpub.com/unlock

Exploring the Godot Engine Interface34

 LEGO – a useful metaphor to understand how Godot works

Building a game in Godot is like constructing a LEGO model. In this analogy, nodes

are like individual LEGO bricks. Each brick has a specific function—some are basic,

like simple blocks, while others might have specialized purposes, like wheels, win-

dows, or gears.

The real power of Godot’s system comes from how flexible it is. Just as you can dis-

assemble and recombine LEGO modules to build something entirely new, you can

mix and match scenes in Godot to quickly assemble different parts of your game.

This modularity allows you to create complex games in a more manageable, efficient,

and creative way.

In Godot, you use nodes to represent different elements of your game, such as char-

acters, environments, and behaviors. Just like how you can connect LEGO bricks in

various ways to create different structures, you can combine nodes in Godot to build

complex game objects and systems.

Now, think of a scene as a pre-built section or module made from those LEGO bricks.

A scene could be a small part, like a car or a tree, or something larger, like an entire

building. In Godot, a scene is a collection of nodes arranged in a specific way to cre-

ate a meaningful part of your game. You can reuse scenes just like you can attach a

pre-built LEGO module to a larger structure.

But there’s one more piece to the puzzle: resources. If nodes are LEGO bricks and

scenes are LEGO modules, then resources are like the stickers, blueprints, and in-

struction manuals that come with your LEGO sets. Stickers represent visuals such

as textures and materials. Blueprints or manuals describe how something behaves

or animates—like animation resources, scripts, and audio streams in Godot.

And just like you can apply the same sticker to multiple bricks or use the same man-

ual for several builds, resources in Godot are reusable, customizable, and sharable

across your entire game.

They don’t build the structure themselves, but they add style, data, and behavior to

the pieces you’ve already put together.

This layered approach—Nodes (bricks), Scenes (modules), and Resources (custom

details and instructions)—makes Godot a powerful and intuitive tool for building

games, the same way LEGO makes building imaginative creations fun and accessible.

Chapter 2 35

Creating an additional scene
Suppose we want to disconnect one of our LEGO bricks (see the preceding feature on LEGO – a

useful metaphor to understand how Godot works). Let’s remove our Label node from our Main scene

and put it in a scene of its own:

1.	 We can do this by right-clicking on the GreetingsLabel node and choosing Save Branch

as Scene…. This is shown in Figure 2.6:

Figure 2.6 – Save Branch as Scene…

Exploring the Godot Engine Interface36

2.	 Save the scene as greetings_label.tscn in our Scenes folder:

Figure 2.7 – Saving the greetings_label as its own Scene

You will notice that GreetingsLabel does not disappear from the scene. However, now

that we have a copy of the label as its own scene, we can delete it from our Main scene

and easily add it back or add multiple labels to the scene.

3.	 If you double-click greetings_label.tscn in the FileSystem area, it will open in a new

scene window:

Figure 2.8 – Double-click greetings_label.tscn to open it in its own scene tab

Chapter 2 37

4.	 Now, delete GreetingsLabel from the Main scene.

5.	 Then add it back by dragging and dropping greetings_label.tscn from the FileSystem

area into the Viewport:

Figure 2.9 – Drag and drop the greetings_label.tscn back into the Viewport

Exploring the Godot Engine Interface38

Now we can see how things look with the label returned to the scene:

Figure 2.10 – Main Scene with the GreetingsLabel node returned

We can now drag and drop several instances of the greetings_label scene into the Main scene,

and we can change the text property of each one in the Text property of the Inspector. However,

when we run the Main scene, each label reverts to Go Go Godot!. This is because each instance has

the same script attached to it, and we previously changed the text property to read Go Go Godot!.

Figure 2.11 – Multiple instances of greetings_label in the Main scene

We can demonstrate instancing by allowing our game to react to input from the user.

What is an instance?

Instancing is the process of producing a game object from a blueprint or primary

design. Instancing works well with scenes. It gives you the ability to divide your game

into reusable components, a tool to structure complex systems, and a language to

think about your game structure in a natural way.

Chapter 2 39

Reacting to player input
Now, we can do an experiment in which we display a different label depending on the input

received from the user. In this case, we will add a sprite and place the label above its head. A

sprite is a 2D image or animation used in a game to represent characters, objects, or other visual

elements. In simpler terms, it’s the picture or graphic you see in the game that moves or interacts

with the environment.

If the player left-clicks on the sprite, we will say Hello Folks! If they right-click on the sprite, we will

say Godot is Great!, and if they press Enter / Return on the keyboard, we will display Hello World!

Firstly, we need a sprite. A great place to get free game assets is from Kenney. You can find the

website here: https://kenney.nl/. The assets I am using for this experiment can be found here:

https://kenney.nl/assets/toon-characters-1.

The sprite I have chosen can be found once you have extracted the folder here: \kenney_toon-

characters-1\Robot\PNG\Poses HD \character_robot_interact.

This is what our sprite looks like:

Figure 2.12 – The robot sprite character for our experiment

https://kenney.nl/
https://kenney.nl/assets/toon-characters-1

Exploring the Godot Engine Interface40

However, you can use any character you prefer for this experiment. We will now add the sprite

to our scene:

1.	 Create a new folder in FileSystem and name it Sprites:

Figure 2.13 – Create the Sprites folder

2.	 Now drag the character you chose into this Sprites folder:

Figure 2.14 – Your chosen image within the Sprites folder in FileSystem

Chapter 2 41

3.	 Now we will create a new scene for our character. Click on the Scene menu and select

New Scene (press Ctrl + N), or click on the + symbol near the Scene tabs:

Figure 2.15 – Multiple ways of creating a new scene

Exploring the Godot Engine Interface42

4.	 Now add the parent or primary node for our scene by pressing Ctrl + A, clicking on the +

icon in the Scene view, or clicking on the Other Node button:

Figure 2.16 – Multiple ways to add a node to a scene

5.	 Search for a Sprite2D node and add it:

Figure 2.17 – Add a Sprite2D node to the scene

Chapter 2 43

6.	 Rename the node to Player:

Figure 2.18 – Sprite2D renamed as Player

7.	 Now press Ctrl + S to save the scene as player.tscn in our Scenes folder:

Figure 2.19 – The saved player.tscn scene

8.	 Make sure that you are in the 2D view. Switch to it if you need to, by clicking on 2D at the

top of the screen.

Exploring the Godot Engine Interface44

9.	 Now drag and drop the character image you selected onto the <Empty> Texture property

of the Player node:

Figure 2.20 - Place your character image in the Texture property of the Player node

10.	 Now your character is in the Player scene:

Figure 2.21 – The Player sprite in the Viewport

Chapter 2 45

11.	 Now we will attach a script to the Player. Right-click on the Player node and select Attach

Script… or click on the Scroll+ icon:

Figure 2.22 – Attach a new script to the Player node

Exploring the Godot Engine Interface46

12.	 Press Ctrl + S to save the script and save it in the Scripts folder. You will now have a new

player.gd script in the Scripts folder:

Figure 2.23 – The player.gd scripts in the Scripts folder

Before we write some code to allow our player to react to different user input, remember that we

want a different greeting for left-click, right-click, and Enter/Return being pressed.

Chapter 2 47

If you remember our LEGO analogy, we need to attach a GreetingsLabel brick (Node) to our

Player brick (Node). We do this by dragging greetings_label.tscn from FileSystem to the

Player node in the Player scene:

Figure 2.24 – Drag the greetings_label.tscn onto the Player node to make it a child

Exploring the Godot Engine Interface48

In Godot, the origin or starting position is measured from the top-left corner of the screen or po-

sition 0, 0. Almost always, you will want to leave the origin unchanged, but just for this example,

we will move it.

Position Player and GreetingsLabel in the Viewport using the Select tool (which looks like the

cursor) or by pressing Q on the keyboard:

Figure 2.25 – The SELECT tool

Your Player scene should look something like this:

Figure 2.26 – The Player scene

Now that our sprite is somewhere near the center of the scene, we need to write a script to make

it respond to user input.

Chapter 2 49

Scripting player reactions to input
Our aim in writing the code for this section is to allow the user to receive a different response

from the sprite depending on which mouse button the user is pressing. We’ll handle three types

of interaction:

•	 Left click: Shows the greeting Hi Folks!

•	 Right click: Shows Godot is Great!

•	 Pressing Enter: Shows Hello World!

Let’s begin by making sure the greeting label is hidden at first.

Hiding the label until the user provides input
We don’t want the greeting to be visible when the scene first runs. We want to hide the label by

calling its hide() function.

Since the _ready() function is the first to run once the node and all its children are loaded into

the scene tree, we can access the GreetingsLabel node using the Godot shortcut operator $.

Once we have access to the node, we simply call the hide() function:

#Called when the node enters the scene tree for the first time.

func _ready() -> void:

 $GreetingsLabel.hide()

With this code, GreetingsLabel is no longer visible when you run the game. You can test this scene

by pressing F6 or clicking on the Run Current Scene button as shown in Figure 2.27:

Figure 2.27 – The Run Current Scene button

Important note

Note that GDScript is an indented language. This means that the first line after a

function, as in the preceding code, is tabbed in once. The game engine requires this

for the code to work correctly. I advise all those working from the digital version

of the book to re-type the code manually or copy the code files from the book’s

GitHub repository to avoid errors caused by copying and pasting the code.

Exploring the Godot Engine Interface50

You will notice that you can no longer see the greeting.

Input handling
Now, to keep things simple for our experiment, we will be using a built-in method for handling

input. A built-in method is simply one that has already been created and comes as part of Godot

Engine. You can tell that a method is built in because it begins with an underscore. You have seen

two so far: _ready() and _process().

For input, we will make use of _unhandled_input(). Don’t worry too much about it now, just

know that if no other function/method is there to capture user input and handle it, then this

method will run.

We declare the _unhandled_input function header and then handle the different types of input

inside the function. For our experiment, we are listening out for two types of input: mouse and

keyboard. For the keyboard, we are only listening for one key – Enter. For the mouse, we are lis-

tening out for left-click and right-click. Let’s look at this in greater detail:

•	 When we detect input from the mouse, we need to show the label again, so we call the

show() function of the label.

•	 If we hear a left click, we change the text of the GreetingsLabel to Hi Folks!

•	 If it is a right click, we set it to Godot is Great!

•	 When we detect input from the keyboard, we need to show the label again, so we call the

show() function of the label.

•	 If we hear Enter pressed, we set the text to Hello World!

Now, let’s look at the code implementation:

extends Sprite2D

This script is attached to a Sprite2D node.

It listens for mouse and keyboard input and displays

different messages on a label depending on what was pressed.

Called when the node enters the scene tree for the first time (i.e.,
when the scene starts).

func _ready():

 # Hide the label at the beginning so it's not visible until an input
event happens.

 $GreetingsLabel.hide()

Chapter 2 51

Called every frame. 'delta' is the time in seconds since the last frame.

func _process(delta):

 # We're not doing anything every frame in this example, but the
function is here in case we want to later.

 pass

Called when the player performs an input action that hasn't already been
handled.

func _unhandled_input(event):

 # Check if the event was a mouse button press.

 if event is InputEventMouseButton:

 # Show the label whenever a mouse button is pressed.

 $GreetingsLabel.show()

 # Check which mouse button was pressed.

 if event.button_index == MOUSE_BUTTON_LEFT:

 # If the left mouse button was clicked, set the label's text
to "Hi Folks!"

 $GreetingsLabel.text = "Hi Folks!"

 elif event.button_index == MOUSE_BUTTON_RIGHT:

 # If the right mouse button was clicked, set the label's text
to "Godot is Great!"

 $GreetingsLabel.text = "Godot is Great!"

 # Check if the event was a key press.

 elif event is InputEventKey:

 # Only show the label and set the text if the Enter key was
pressed.

 if event.keycode == KEY_ENTER:

 $GreetingsLabel.show()

 $GreetingsLabel.text = "Hello World!"

Exploring the Godot Engine Interface52

Now we have tested our Player scene, and we know that it works as expected. We can return to

our Main scene and remove the GreetingsLabel node and instead drag player.tscn onto the

Main node. Then, run the game again and check that it all works correctly:

Figure 2.28 – Our new Main scene

This is an important chapter, introducing you to the basic building blocks of Godot. I recommend

that you revisit it often or even return to the end-chapter summary to remind yourself of the point

and purpose of scenes, nodes, and scripts.

Summary
In this chapter, we explored the foundational features of Godot 4, beginning with editing an ex-

isting project and creating an additional scene. You learned how to navigate the interface, save

scenes effectively, and grasp the node and scene design philosophy central to Godot. We also

covered how to make your projects interactive by reacting to player input. By mastering these

core concepts and tools, you’ve taken the first essential steps toward confidently using Godot to

develop games.

In the next chapter, we will get an introduction to 3D and look at how to work with materials

and lighting.

Chapter 2 53

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/godot-4-game-dev

https://packt.link/godot-4-game-dev

3
Introduction to 3D

Working with 3D in Godot can feel like stepping into an entirely new dimension of game devel-

opment—quite literally! This chapter serves as your gateway to understanding the fundamentals

of 3D in Godot, guiding you through the essential tools and concepts. Whether you’re designing

a vast open world or a compact 3D puzzle, these foundational skills will set you up for success.

We’ll start by learning how to create 3D objects, the building blocks of any 3D scene. Next, we’ll

explore how to make these objects visually engaging by applying materials, which give them color,

texture, and detail. Finally, we’ll introduce you to lighting, a crucial component that brings your

3D environment to life by adding depth, mood, and realism.

In this chapter, we’re going to cover the following main topics:

•	 Creating 3D objects

•	 Creating a material for your object

•	 Creating lighting for the scene

By the end of this chapter, you’ll not only understand how to build and illuminate a simple 3D

environment but also gain confidence in navigating Godot’s 3D workspace. These skills are es-

sential for any aspiring game developer and provide a solid foundation for creating immersive

3D experiences.

Technical requirements
This chapter’s code files are available here in the book’s GitHub repository: https://github.com/
PacktPublishing/Godot-4-for-Beginners/tree/main/ch3/introto3d

Visit this link to check out the video of the code being run: https://packt.link/6Se0U

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch3/introto3d
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch3/introto3d
https://packt.link/6Se0U

Introduction to 3D56

Creating 3D objects
Up until now, we have concentrated on 2D scenes and 2D nodes, along with some scripting us-

ing GDScript. It’s important to know that you are not restricted to 2D though, since Godot is an

extremely capable 3D game engine.

We will begin our exploration of 3D by creating a new Godot project in the Project Manager win-

dow by clicking on the +Create button. Remember to create a folder for your project and name

it. I have called my project IntroTo3D, as shown in Figure 3.1:

Figure 3.1 – Creating a new Godot project

By default, new Godot projects open in 3D view – that’s handy! Now we can create our first 3D

scene. Because Godot uses a scene tree structure, we need to choose a root node for the tree. The

easiest way to do this is to click on the 3D Scene button:

Chapter 3 57

Figure 3.2 – Creating a new 3D scene with Node3D as the root

Your Godot interface should now look like Figure 3.3. Take note that we now have an extra dimen-

sion – Z – representing depth, and we have Node3D as the root of our scene tree.

Figure 3.3 – An overview of our first 3D scene

Introduction to 3D58

Save your new scene now by pressing Ctrl + S or clicking on the Scene menu and choosing Save

Scene. Name your scene main.tscn, as shown in Figure 3.4:

Figure 3.4 – Saving our scene as main

The stage is set for us to explore the scene. We can make use of shortcuts to easily do this.

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use

the search bar to find this book by name. Double-check the edition shown to

make sure you get the right one.

http://packtpub.com/unlock

Chapter 3 59

Moving around the scene
You can move around the 3D scene much like you do in most 3D games:

•	 Hold down the right mouse button to look around

•	 Use WASD to fly around the scene (while holding right-click)

•	 Use E to fly up

•	 Use Q to fly down

•	 Use the middle mouse button to fly around the center of whatever is on the screen

In 2D, we made use of Sprite2D to visualize things. In 3D, we will use MeshInstance3D.

In 3D graphics, a mesh is a digital model of a 3D object or shape, created by connecting points

(called vertices) with lines (edges) and flat surfaces (faces).

To create a mesh instance in our scene, we can either drag a pre-created 3D model into the scene,

or we can use primitive shapes with the MeshInstance3D. To do this, add a new MeshInstance3D

node to the scene tree:

Figure 3.5 – Adding a MeshInstance3D node to our scene

Although we now have a mesh, there is still nothing visible. You could think of it as a sprite with

no texture. We need to choose a basic shape. Using the Inspector window on the right-hand side,

click on the Mesh property dropdown and select New BoxMesh.

Introduction to 3D60

 This will create a new cube that you can manipulate with the same Select, Move, Rotate, and

Scale tools.

Figure 3.6 – Adding a BoxMesh to our MeshInstance3D

Now that MeshInstance3D has a mesh shape, we can see the cube or box in the Viewport:

Figure 3.7 – MeshInstance3D is now visible in the Viewport as a 3D cube

Chapter 3 61

We could make a 3D stick man using multiple of the simple shapes in MeshInstance3D. Have a

look at the following result and try to recreate it yourself using the Selection, Move, Rotate, and

Scale tools. You do not have to use the same shapes as I have, so your stick man can look very

different from mine, and that is okay.

Figure 3.8 – Making a stick man with simple mesh shapes

As you can see in Figure 3.8, I have combined different basic shapes to create a stick figure.

Note that if you select the parent StickMan node, which is the original Node3D, whatever you

do to it – such as using Scale or Rotate – it will do to all of the child nodes.

Note

In 2D, the positions and sizes of objects are measured in pixels, whereas in 3D, Godot

uses the metric system, so each unit is 1 meter and represents an area of 1 meter by

1 meter.

Introduction to 3D62

Creating a material for your object
When working in 2D, we give Sprite2D a texture so that we can see it on the screen. In 3D, we

use materials.

Materials describe how the game engine should display an object. Once a mesh has material, it

can be assigned things such as colors and shadows. It can also interact with the lighting in the

scene. Our stick man already has a default material with a gray color, otherwise we wouldn’t be

able to see it!

Creating a material
Godot saves materials as resources. This means that once we have created one material, we can use

it again and again on different objects. Let’s create a new folder in FileSystem called Materials:

Figure 3.9 – The Materials folder

Now right-click on the Materials folder, select Create New, and then Resource…:

Figure 3.10 – Creating a new resource

Chapter 3 63

On the Resource menu, which is shown next, search for material, choose StandardMaterial3D,

and give it a name. I have named mine stick_material.tres:

Figure 3.11 – Adding StandardMaterial3D

Introduction to 3D64

Once the material has been created, it can be modified in the Inspector window. Materials have

a lot of changeable properties, such as texture, roughness, shininess, color, and transparency.

We can change the color of our material by clicking on the Albedo dropdown and selecting the

one we like:

Figure 3.12 – Changing the color of the material in the Albedo dropdown

The word albedo comes from the Latin word albus, which simply means white. Albedo has tradi-

tionally been used to change the color and transparency of a material.

I have chosen a brown color to make the material look more like wood. Now play with the

Roughness value to improve the look further:

Figure 3.13 – Roughness has a value from 0 to 1

Chapter 3 65

There are so many options to experiment with for materials. However, if you really want to cre-

ate materials that look like the object you are trying to replicate, I suggest using a tool such as

Material Maker, which is free and made using the Godot Engine:

https://rodzilla.itch.io/material-maker

Applying a material
Actually, putting the material onto the mesh is as simple as dragging the material resource file

onto the mesh in Viewport!

You can see the effect of this in Figure 3.14:

Figure 3.14 – Drag and drop your material onto your mesh

As you see in Figure 3.14, when you place your material on one of the mesh shapes, the mesh

immediately adopts the color and texture of the material.

https://rodzilla.itch.io/material-maker

Introduction to 3D66

If you change any of the properties of the material, any of the meshes to which the material has

been applied will update in real time too. I suggest that you try this right now to see the effect.

You can see this effect in Figure 3.15 – all the meshes have been updated with the new material:

Figure 3.15 – Changing the roughness updated the material on all meshes

Did you notice how the roughness of the material changed the way the stick man looks?

Chapter 3 67

Challenge yourself
In this subsection, we will challenge ourselves to practice using the skills that we have just learned.

Try to replicate the three materials shown in Figure 3.16. The first simply uses Albedo with low

roughness and a high Metallic value. The second uses Transparency, and the third one has a

Texture value.

Figure 3.16 – Metallic (left), transparent (center), and textured (right) materials

To walk through the challenge, first, add three MeshInstance3D nodes to the scene. In the

Inspector window, choose a basic CapsuleMesh and duplicate it by pressing Ctrl + D.

The expected outcome of these steps is shown in Figure 3.17:

Figure 3.17 – Three MeshInstance3D meshes with CapsuleMesh shapes

Introduction to 3D68

The next step of the challenge is to create the first material.

First material
Now we need to create three new resources in the Materials folder. We will use the StandardMa-

terial3D resource for each material. To identify them easily, name the materials metal_material.

tres, transparent_material.tres, and textured_material.tres:

Figure 3.18 – Our new materials

You can click and drag each material onto each capsule so that if we begin changing the material

properties, we will see our meshes update in real time:

Figure 3.19 – Drag and drop your materials onto the capsules

Chapter 3 69

On your metal material, open the Albedo property and change the color to be like that of the

challenge (sky blue). Also, adjust the roughness and the Metallic property till you are satisfied

that it looks shiny and reflective, like metal.

Figure 3.20 – Creating a shiny metal material

Notice the properties you should adjust in Figure 3.20 to create the metallic effect you want.

Introduction to 3D70

Second material
Begin again by changing the Albedo property of the material to a bright pink to match the chal-

lenge. Take the Alpha channel down to around halfway as well. You will notice this has no effect

now. This is because we need to adjust the Transparency property to use Alpha.

Figure 3.21 – Creating a transparent pink capsule

Chapter 3 71

Note the properties of the material in Figure 3.21, which you need to adjust to create the trans-

parent effect you are after.

Third material
The final material has a texture instead of color. The texture is simply an image that is wrapped

around the capsule shape. We can simply use the same robot image that we used for the sprite

when we were working in 2D in Chapter 2. Expand the Albedo dropdown and drag an image onto

the empty Texture property:

Figure 3.22 – Adding a texture to a material

You can clearly see the flat 2D image of a robot has been applied to the capsule shape and is being

stretched around it.

Another fundamental part of any 3D scene is the lighting. In the next section, we’ll explore dif-

ferent types of lights and how to use them effectively in your 3D scenes.

Introduction to 3D72

Creating lighting for the scene
To influence the mood and atmosphere, and visually enhance a game, lighting is crucial. Good

lighting adds depth, highlights details, and can guide the players’ attention, which all makes the

game world more immersive and engaging.

Godot has several lighting nodes available. We will look at a few of the primary ones now. We will

add these nodes to the current scene and examine their effects on the three capsules.

Click on the + in the scene tree to add a new node to the scene. Search using the keyword light.

You will see that there are three types of nodes related to light in Godot, as shown in Figure 3.23:

Figure 3.23 – Three primary light nodes in Godot

Chapter 3 73

Directional light simulates sunlight by casting parallel rays over your entire 3D scene, providing

consistent illumination from a specific direction, making it ideal for outdoor environments. Now

is the time to implement directional light in Godot.

Directional light
Add a DirectionalLight3D node to the scene. This type of light mimics the sun and sends out

infinite light in a single direction as parallel rays. It is used for lights with high intensity that are

far away from the scene.

In the Viewport, the node is a white arrow pointing in the direction the light comes from. You

can rotate this node to change the direction of the light. The position of this node will not affect

the scene as the light is coming from everywhere.

Try rotating the light to see the effect it has on the scene. You can also change the Color and

Energy properties of the light in the Inspector window.

You can see the direction the light is coming from displayed as a large white arrow in Figure 3.24:

Figure 3.24 – Note the reflection in the metal capsule is as if the sun were directly overhead

Introduction to 3D74

Metallic surfaces will reflect the light, as shown in Figure 3.24.

In Figure 3.25, you can see the Color and Energy properties, which can be adjusted to change the

color of the light and its intensity:

Figure 3.25 – The Color and Energy properties of DirectionalLight3D

Before we add a new light to the scene, click on the eye icon to toggle the visibility of the

DirectionalLight3D node to off so that we can see the effects of the next light:

Figure 3.26 – Toggle the visibility of the DirectionalLight3D node to off

Click on the + in the scene tree to add a new node to the scene. Search using the keyword light

(see Figure 3.23).

Omni light
Add an OmniLight3D node to the scene. This node emits light from a single point in all directions,

like a light bulb. Like a light bulb in real life, it is brighter as you get closer to it. You can adjust

the range of the light by clicking on the orange circle that appears at the edge of its wireframe,

as shown in Figure 3.27:

Chapter 3 75

Figure 3.27 – The OmniLight3D range handle

You can also change the Color and Energy properties of OmniLight3D. However, it is hard to see

with no surface to reflect off. Follow these steps to fix this:

1.	 Use your new skills to add a ground surface to the scene by adding another MeshInstance3D

node. Rename it to Ground.

2.	 Give it the PlaneMesh shape. Scale and move the plane so that it looks like a large floor

under the capsules.

Introduction to 3D76

3.	 Create a new material and save it as ground_material.tres.

4.	 Set the Albedo property of the material to white and apply it to Ground. It should look

something like Figure 3.28:

Figure 3.28 – The Ground plane mesh added with a white material applied

Go ahead and experiment with changing the Color and Energy properties of OmniLight3D.

Notice how it changes the mood of the scene.

Do you see the reddish glow of the light on the floor in Figure 3.29?

Chapter 3 77

Figure 3.29 – Changing the color property of OmniLight3D

You can also enable shadows with DirectionalLight3D. However, to see the shadows, you would

need to set the Energy property of DirectionalLight3D to 0 to turn it off. The shadow will then

be cast by OmniLight3D. Open the Shadow property dropdown and enable it:

Figure 3.30 – Enabling shadows on DirectionalLight3D

Introduction to 3D78

Once shadows have been enabled, you can see them cast by objects in the scene, as shown in

Figure 3.31. Sometimes shadows do not appear due to a bug in Godot 4. In that case, you should

save your work and restart the engine.

Figure 3.31 – Shadows cast by DirectionalLight3D

Now we just have one more light to experiment with.

Spotlight
Just like at the theatre, SpotLight3D is a node that emits light in a single direction in the shape

of a cone. This works well for lights such as headlights or streetlights. Disable OmniLight3D and

DirectionalLight3D by clicking on the eye visibility toggle to the right of them in the scene tree.

Now add a Spotlight3D node to the scene. You will see the cone wireframe of the light, and again

we can use the little orange circles to change the range and the angle of the light.

Chapter 3 79

You can see the cone of light that the spot will cast shown as a white cone in Figure 3.32:

Figure 3.32 – Putting the SpotLight3D on our textured capsule mesh

Introduction to 3D80

Of course, we can also change the Color and Energy properties of the light, and we can enable

shadows just as we did for DirectionalLight3D:

Figure 3.33 – Changing the color and angle of the spotlight and enabling shadows

Now that you know how to add and manipulate the three types of lights in Godot, you have the

tools to create the right atmosphere for your 3D Made in Godot game.

Chapter 3 81

Summary
In this chapter, you took your first steps into 3D game development with Godot. You learned how

to create basic 3D objects using meshes, providing the building blocks for your scenes. We then

explored how to enhance these objects by applying materials, adding color, texture, and depth

to bring them to life. Finally, we introduced lighting, demonstrating how to use different types

of lights to create an atmosphere, highlight important areas, and add realism to your scenes.

By mastering these skills, you now have the tools to design and illuminate simple 3D environments,

setting the stage for more complex projects as you continue your journey in game development.

In the next chapter, we will be taking a detailed look at how to work with GDScript, the built-in

programming language that was designed to work with Godot Engine.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

4
Scripting with GDScript

In this chapter, you’ll begin your journey into GDScript, the scripting language at the heart of

Godot. Scripting is a crucial part of game development, enabling you to control the behavior and

interactions within your game world. By learning GDScript, you’ll gain the ability to define game

mechanics, create dynamic interactions, and build functionality that goes beyond static assets.

We’ll start by showing you how to create, edit, and save scripts in Godot. Then, we’ll introduce

you to key programming concepts, such as variables and data types, and how they work together

with Godot’s order of execution. You’ll explore mathematical and logical operators that allow you

to perform calculations and comparisons, followed by an introduction to decision-making with

if, else if, and else statements.

Finally, we’ll delve into the use of functions, both built-in and custom, to structure your code

efficiently.

In this chapter, we’re going to cover the following main topics:

•	 Understanding GDScript

•	 Creating scripts

•	 Understanding functions

•	 Understanding variables

•	 Understanding operators

•	 Relational and comparison operators

•	 Using custom functions

Scripting with GDScript84

By the end of this chapter, you’ll have the foundational knowledge to script essential game me-

chanics and confidently control the logic and flow of your game.

Technical requirements
This chapter’s code files are available here in the book’s GitHub repository: https://github.com/
PacktPublishing/Godot-4-for-Beginners/tree/main/ch4/introtoscripting

Visit this link to check out the video of the code being run: https://packt.link/lmzgi

Understanding GDScript
Godot has its own built-in scripting language, GDScript, a high-level, programming language that

is like Python. Unlike Python, GDScript is optimized for Godot’s scene-based design philosophy

and can specify strict typing of variables.

Scripts are used to program custom behavior for our nodes. In the next few subheadings, we will

look at how to create scripts, edit them, and save them.

Creating scripts
We’ve already worked with scripts, but repetition is a good teacher. So, let’s remember scripts

are usually attached to nodes.

Start by creating a new Godot project. I have named mine IntroToScripting. Now create a new

2D scene, which will give us Node2D as the root node in the scene tree.

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch4/introtoscripting
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch4/introtoscripting
https://packt.link/lmzgi

Chapter 4 85

There are a few different ways to attach our script to this node. Select Node2D and, in Inspector,

locate the Script property and choose New Script… from the <empty> dropdown.

Figure 4.1 – Adding a new script via Inspector for Node

Scripting with GDScript86

You could also right-click on the node you wish to attach the script to, and then click on Attach

Script… on the pop-up menu or click on the script icon with the plus sign.

Figure 4.2 – Attaching a script by right-clicking the node

Give your script a name, such as IntroToScripting, and click Create.

Figure 4.3 – Naming and creating the script

Chapter 4 87

We are now presented with the script editor. This is like a built-in Integrated Development

Environment (IDE) for the GDScript programming language in Godot. This is a major benefit of

Godot when comparing it to other engines, as you do not need to rely on a third-party program

for your coding.

If you look at Figure 4.3, you will see we created the script with the checkbox next to Template

checked to use the default node. This means that the script will be pre-populated with some code.

In Figure 4.4, we can see the generated code that is pre-populated in the script editor:

Figure 4.4 – The script editor

As Figure 4.4 depicts, our script file has now appeared under FileSystem, with the .gd extension.

Also, we can see two lists: Filter Scripts, which contains our new script, and Filter Methods,

which contains the functions that exist in the script. Note that I also renamed Node2D to

IntroToScripting to match the name of my script.

The script editor comes with code formatting. You can see the formatting because different parts

of the code are different colors. This helps us understand and identify parts of the code quickly.

You will notice that the func keyword is in red, and the function name is in blue. Auto-complete is

also a feature and the editor will try to predict what you are typing and prompt you with options.

This improves efficiency and helps you to find things when you are not sure what they are called.

Scripting with GDScript88

Let’s break down the code shown in Figure 4.4 line by line:

1.	 Line 1: The extends keyword is in red, so we know it is a keyword and Node2D is in dark

green, which means it is a class reference.

GDScript is an object-oriented programming language, meaning it organizes code into

classes. Think of a class as a blueprint for creating something. Node2D is a built-in class

in Godot, already defined by the developers. By writing extends Node2D, we are telling

Godot that we want to use everything Node2D can do, while also adding our own new

features and behaviors.

2.	 Line 4: This line is gray, which means that it is a comment. This line is written by the

programmer to explain what the code that follows it does. It helps make the code easier

to understand. The hash symbol (#) tells the computer to ignore this line when running

the program; it’s just for humans to read.

3.	 Line 5: The func keyword is in red, which shows it’s a special keyword in GDScript.

_ready() is in light green, meaning it’s a built-in function already created by the devel-

opers for us. The round brackets, (), tell us this is a method, and the colon, :, means that

everything indented after that is part of the method.

4.	 Line 6: The pass keyword tells the computer to skip the line. You can’t have an empty

function, so pass stops the program from giving an error. There’s also an inline comment,

which is a note reminding you to replace this line with your own code to do things in this

function.

5.	 Line 9: The comment here explains that the _process function runs once every frame

of the game. Think of a frame as a single picture in a fast-moving animation. The game

shows lots of frames per second to create smooth motion. The delta variable is the time

difference between the current frame and the last one, and we use it to make sure the

game’s movement and animations stay smooth and consistent, no matter how fast or

slow the computer running the game is.

6.	 Line 10: Once again, we see the func keyword, which tells us we are defining a function.

_process is shown in green, meaning it’s a built-in function provided by Godot. Inside

the brackets, we see the word delta. This is a parameter, which is like a small piece of

information that gets passed into the function to help it perform its task. In this case,

delta is used to represent the time between frames, ensuring the game runs smoothly.

7.	 Line 11: The pass keyword appears again. The pass keyword tells the computer to skip this

line. You can’t have an empty function, so pass stops the program from giving an error.

Chapter 4 89

Now that you’ve learned the basics of scripting, the next section will explore one of the most

essential tools in GDScript: functions. We’ll dive into how functions work, starting with built-

in functions such as _ready and _process, which help control your game’s flow and behavior.

Understanding functions
A function is like a set of instructions that tell the computer to do something specific. Think

of it as a mini program inside your code. You give it a name, and when you call that name, the

function runs and does its job. For example, if you had a function called player_jump(), every

time you called it, the computer would follow the steps in that function to make the player jump.

Functions help organize your code, so you don’t have to write the same instructions repeatedly.

Some functions are built in because the people who made the programming language or engine

(like Godot) have already created them to handle common or essential tasks.

For example, there’s a built-in function that tells the game to update the screen every frame. You

don’t have to write that yourself because it’s something almost every game needs, and it saves

you time.

But we also need to write our own functions because every game or program is different. You

might want to make a function that moves a character in a special way or checks whether a player

has won a level. Since only you know exactly what your game needs to do, you can create custom

functions to handle those specific tasks.

In Godot, built-in functions such as _ready and _process play a vital role in controlling how your

game behaves and updates over time. Here’s what each of these functions does:

•	 _ready: The _ready function is like the starting point for a node. Think of it as the moment

when everything is set up and ready to go, like when the curtains rise at the start of a

play. The _ready function is the first function that runs once the node is in the scene tree

along with all its children. Nodes are loaded from the bottom to the top and child nodes

are loaded before their parent. You can put any code inside this function that you want to

run right when the object is ready, such as showing a character on the screen or starting

an animation.

Scripting with GDScript90

•	 _process: The _process function is like the heartbeat of your game object. It runs repeat-

edly, once for every frame (like every snapshot of your game). You use it to update things

continuously, such as moving a character or keeping track of the time. The delta inside

the function is a small value that tells you how much time has passed since the last frame,

so you can make sure everything happens smoothly, no matter how fast or slow the com-

puter runs the game.

Now that you understand how functions work, you can take on board the concept of the game loop.

Understanding the game loop
Most games run inside a loop that keeps updating what’s happening in the game—such as moving

characters, checking for collisions, and drawing graphics to the screen. This is called the game

loop. It runs many times per second (often 60 times per second or more), and every time it runs,

it updates and redraws the game.

In Godot, you don’t usually write the loop yourself. Instead, Godot handles it for you and gives

you special functions you can use to plug into the game loop. The three most common ones are

discussed in the subsequent sections.

_ready()
This function is called once when the node and its children are added to the scene tree and are

ready to go. It’s like setting up your LEGO model before the game starts.

Use _ready() to do the following:

•	 Set initial values

•	 Connect signals

•	 Hide or show things at the start

•	 Prepare anything that only needs to happen once

_process(delta)
This function runs every frame. It’s used for things that should happen constantly such as checking

input, changing animations, or moving something smoothly.

Use _process(delta) for the following:

•	 Player input

•	 Animations

Chapter 4 91

•	 UI updates

•	 Non-physics-related updates

Note that delta is the amount of time (in seconds) since the last frame. This helps you keep

movement smooth even if the frame rate changes.

_physics_process(delta)
This is like _process, but it runs at a fixed rate (by default, 60 times per second). This makes it

perfect for anything involving physics, such as moving a character with collision.

Use _physics_process(delta) for the following:

•	 Physics calculations

•	 Movement with move_and_slide() or move_and_collide()

•	 Gravity and jumping

To demonstrate how the physics_process function works, follow these steps:

1.	 Create a new scene with Sprite2D as the root node, as shown in Figure 4.5:

Figure 4.5 – A Sprite2D node as the root of the scene

2.	 Use the Godot icon.svg file as the texture for the sprite.

3.	 Attach a script to the node by right-clicking on it and choosing Attach Script… or clicking

on the script icon with the + symbol. Add the following code to the script:

extends Sprite2D

var speed = 100

var velocity = Vector2.ZERO

func _ready():

 print("Sprite is ready to move!")

func _process(delta):

Scripting with GDScript92

 # Check input and set direction

 velocity = Vector2.ZERO

 if Input.is_action_pressed("ui_right"):

 velocity.x += 1

 if Input.is_action_pressed("ui_left"):

 velocity.x -= 1

func _physics_process(delta):

 # Move the sprite using physics

 position += velocity * speed * delta

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

Chapter 4 93

When you run the scene, you will see the message appear in the Output window once the scene

loads, then you can move the sprite to the left and the right using the arrow keys and the game

loop constantly updates the screen.

In the next section, we’ll explore one of the most fundamental aspects of programming—variables.

You’ll learn what variables are, how they store data, and how they are used to manage game

information such as player stats, scores, and more.

Understanding variables
Think of a variable like a labeled box where you can store information. Just like how you can put

something inside a box and come back to use it later, a variable holds a piece of information, such

as a number or a word, that you can use and change while your program runs.

For example, if you’re making a game and want to keep track of the player’s health, you would

create a variable called health. Every time the player finds a heart or gets injured, you can add to

or subtract from the health variable. It helps your program remember and work with data, just

like a box holds your stuff until you need it.

We can store different types of data in our variables, but the most common ones are as follows:

•	 Integers (whole numbers) such as 1, 2, 3

•	 Real numbers (floating point or decimal numbers) such as 0.1, 0.2, 0.3

•	 Strings of text (collections of characters) such as Hello World, ABC, "@:!3"

•	 Boolean values (true and false values) such as True, False, 0, 1

In the next section, we’ll explore variables, a fundamental concept in programming. You’ll learn

how to define variables in Godot and follow best practices for organizing them in your scripts.

Creating a variable
It is good practice in programming to put our variables at the top of our script under the class

definition or extension of that class. We will put ours under the extends Node2D line.

Variables need to be defined by giving them a name and a value to store. We write the var keyword

to tell the compiler that this is a variable. Now we identify our variable by giving it a name (we will

use the name health). To assign it a value, we use the equals sign. This is called the assignment

operator in programming, and it is not the same as equality in mathematics. Its role is to assign

the value on its right to the variable on its left.

Scripting with GDScript94

Finally, we must assign a starting or default value – in this case, we will set health to 100:

extends Node2D

var health = 100

Creating the variable and assigning a value only serves to store the value in the computer’s mem-

ory. We can access this value by using the name of the variable. We can then do something with

the value such as outputting it to the screen.

To do that, we need to call the built-in print function and give it the name of our variable to print.

We can only display this value once the node is ready. The best place to call the print function

is from the _ready function:

extends Node2D

var health = 100

#Called when the node enters the scene tree for the first time.

func _ready():

 print(health)

Next, run the program. Choose to use the current scene as the main scene if prompted. Note

that you will not see any output in the game window. Instead, the value will be displayed in the

console of the Output window.

Figure 4.6 – The value of the health variable is displayed in the Output console

With variables established, it’s important to understand the different types of data they can hold.

In the next section, we’ll explore data types, which define the kind of information your variables

store, from numbers to text and beyond.

Chapter 4 95

Data types
I touched on the different types of data that we can store in variables at the start of the chapter.

It might help to think of data types like different kinds of containers for holding specific kinds

of information. Just like you wouldn’t store water in a paper box or keep food in a bottle, in pro-

gramming, you use different types of variables depending on the kind of data you’re working with.

Here are some examples:

•	 Numbers go in a container called int (for whole numbers) or float (for numbers with

decimals)

•	 Text goes into a container called string, representing characters grouped together like

individual beads on a string (letters, numbers, or symbols)

•	 Boolean holds only true or false—like a simple yes or no answer

Using the right type helps the program know what to expect and how to handle the information.

Since GDScript, like Python, is a dynamic programming language, we do not have to specify the

type of variable we want to store. This makes programming much faster. However, as a program

gets larger, and more team members are working on the project, it is easier to find errors and bugs

by specifying the data type of the variable.

This will prevent people from trying to store the wrong type of data in the wrong variable.

We could change our health variable as follows:

extends Node2D

var health : int = 100

This will not affect the program output.

When we want to make fine adjustments to a value, for example, to have more granular control

over the player’s jump height, we can use float. This is a decimal number, and it can be created

as follows:

extends Node2D

var health : int = 100

var jump_strength : float = 220.5

Scripting with GDScript96

In this code, we’re declaring a variable called jump_strength and specifying that its data type is

float, which allows it to store decimal numbers. By setting it to 220.5, we’re giving more precise

control over how high a character can jump, as decimal values offer finer adjustments than whole

numbers. This is especially useful for game mechanics such as jump height, where small tweaks

can have a big impact on gameplay.

In the next section, we’ll explore naming conventions in programming, which are important

guidelines for how to name your variables, functions, and other elements. Following these con-

ventions not only makes your code easier to read and understand but also helps avoid errors and

confusion as your project grows.

Naming conventions
The way that we name our nodes, scenes, variables, and functions is important too. Naming con-

ventions are like guidelines for how we name things in programming, such as variables, functions,

or classes. They help make your code easier to read and understand, not only for you but also for

others who might work on your project.

Good naming conventions make it clear what something does. Imagine if you named everything

randomly, such as calling your player’s score x and your enemy’s health y. It would be confusing

and hard to follow, especially in big projects.

By following naming conventions, you keep your code organized and readable, making it easier

to maintain and share with others.

The naming conventions used by GDScript and Godot developers are as follows:

•	 snake_case: This is used for scenes, variables, and functions. It is called snake_case be-

cause each new word is connected with an underscore, making the combination look

like a little snake.

•	 SCREAMING_SNAKE_CASE: This is used for constants. All alphabetic characters are

uppercase.

•	 PascalCase: This is used for classes and nodes in the scene. Each new word begins with

a capital letter.

The most important element when naming things is that the name should be meaningful and

descriptive so that the program becomes self-documenting.

Chapter 4 97

Often, for cooldowns and testing the state of things in play, we will use a Boolean value. An ex-

ample could be to check if the player is currently dashing:

extends Node2D

var health : int = 100

var jump_strength : float = 220.5

var is_dashing : bool = true

In the preceding code, a Boolean variable called is_dashing is being declared and initialized with

the value true. This means that the player is currently in a dashing state. Boolean variables like

this one are often used to track whether a certain condition is true or false in the game.

The last variable we will look at here is String. A String is used to store combinations of characters

and, most often, we use this for storing text. Note that when we define String, we write it with

a capital letter. This is because String is a class and is different from the other data types as it is

not primitive. Additionally, String has many methods associated with it. We could use String

to store the name of the player.

In the next example, we declare and initialize a String variable. Strings are used to store text,

such as a player’s name. The following line of code creates a variable called player_name and

assigns it a default value of "Unknown Player". This allows us to store and display a player’s

name in the game.

If you look at the following code, you will notice that strings are assigned their own unique golden

color so that they are easily spotted in your code.

extends Node2D

var health : int = 100

var jump_strength : float = 220.5

var is_dashing : bool = true

var player_name : String = "Unknown Player"

In the upcoming section, we’ll explore the concept of order of operations in programming. Un-

derstanding how operations are executed in a specific sequence is crucial for writing accurate

and efficient code. This ensures that calculations and logic are performed in the correct order to

achieve the desired outcomes.

Scripting with GDScript98

Understanding operators
Operators are the symbols used to carry out operations in programming.

These operators are essential tools that allow you to perform different operations such as math-

ematical calculations, comparisons, and logical evaluations, helping you control how your code

behaves and interacts with data.

First, let’s look at the mathematical operators:

•	 Addition: The + sign is used to increase the value of a variable by an amount

•	 Subtraction: The – sign is used to decrease the value of a variable by an amount

•	 Multiplication: The * sign is used to multiply the value of a variable by another value

•	 Division: The / sign is used to divide the value of a variable by another value

We can experiment with using these operators with the player_level variable in our program.

In our code, the player’s level is 23. If we add 7, it will be 30. Look at the _ready function here to

see this in action:

func _ready():

 print(player_name)

 print(player_level)

 print(player_exp)

 print(has_key)

 player_level = player+level + 7

 print(player_level)

You will notice now that the output is first 23, and then, when it prints again, it changes to 30.

It’s important to note that assignment operations work from right to left. In this case, we are

taking the value 7, adding it to the current value of player_level, and then using the assignment

operator (=) to store the result back into the player_level variable on the left side. This means

the existing value of player_level is updated with the new result.

Chapter 4 99

When programming, we always want to focus on efficiency, and this means avoiding repetition.

As you can see, we repeated the variable name. To avoid this in the future, we can use a new

operator called the shortcut operator, and we can refactor our code more efficiently as follows:

#player_level = player_level + 7

player_level += 7

print(player_level)

If we wanted to reduce the level to 0, we could subtract 30:

player_level -= 30

print(player_level)

We can do the same for multiplication and division:

Figure 4.7 – Multiplication and division

You can also add variables together. If we create a variable called spike_damage, then every time

the player hits some spikes, we can reduce their health by that value:

Figure 4.8 – Using the spike_damage variable

Before we start solving more complex expressions, it’s important to understand the order in which

operations are carried out in maths.

Order of operations
Although the computer runs one line at a time from the top of the program to the bottom, just like

in cooking, where you need to do things in a certain order (like mixing ingredients before baking),

in math and programming, there’s a specific order in which calculations are done.

Scripting with GDScript100

The order of operations tells the computer which parts of a calculation to do first. Here’s a simple

way to remember it using PEMDAS:

•	 Parentheses: Do the calculations inside parentheses first

•	 Exponents: Then, calculate powers or roots (such as squaring a number)

•	 Multiplication and Division: Next, do multiplication and division from left to right

•	 Addition and Subtraction: Finally, do addition and subtraction from left to right

For example, in the expression 3 + 5 * 2, the computer will first do the multiplication (5 * 2 = 10),

and then the addition (3 + 10 = 13), because multiplication comes before addition in the order

of operations.

Understanding this is important because it ensures that your calculations are done correctly!

Practice exercise
To practice using variables, try creating four variables that could be used to store information

about a player. Each of these variables should use a different data type.

This exercise also introduces an important concept: variable scope – watch out for it in the explanation

below.

The four variables are as follows:

•	 Player name

•	 Player level

•	 Player experience points

•	 Does the player have the key or not?

The solution to the exercise is as follows:

•	 var player_name : String = "Riptide"

•	 var player_level : int = 23

•	 var player_exp : float = 123.45

•	 var has_key : bool = false

Chapter 4 101

We can print all of them, each on a new line in the _ready function:

func _ready():

 print(player_name)

 print(player_level)

 print(player_exp)

 print(has_key)

Executing the preceding code will print the values to the console.

In the next section, we’ll explore relational and comparison operators in Godot. These operators

allow you to compare values, helping your code make decisions by checking conditions such as

whether one value is greater than, less than, or equal to another.

Relational and comparison operators
Often, we need to compare values to determine whether they meet a specific condition—true or

false. This allows our code to branch and perform different actions based on the result of the com-

parison. To evaluate these conditions, we use relational operators, which help us compare values.

The different operators available for comparison are as follows:

•	 Equality: Two equals signs (==) are used to test if two values are the same

•	 Greater than: Using angle brackets (>), we can compare if one value is bigger

•	 Greater than or equal to: Using (>=), we can test if the value is bigger than or the same

as another value

•	 Less than: Using angle brackets (<), we can compare if one value is smaller

Variable scope

In the preceding solution, a variable was declared and initialized within the _ready

function. This limits the variable’s scope to local, meaning it is only accessible within

the _ready function where it was declared. Unlike class variables (which are defined

at the top of the program and accessible throughout the class), local variables can

only be used in the specific function or block of code where they are defined. This

is known as variable scope.

Scripting with GDScript102

•	 Less than or equal to: Using angle brackets (<=) with an equals sign, we can test if the

value is smaller or the same as another value

•	 Not equals: Using an exclamation mark and an equals sign (!-), we can test if one value

is not the same as another value

We use these operators with if statements, which are fundamental in programming. These if

statements allow us to check if a condition is true, and only when it is true does the block of code

inside the statement run. This makes our game more flexible, enabling it to perform different

actions depending on the result of the tested conditions.

All of this is demonstrated in the following code:

var player_lives : int = 3

if health == 0:

 player_lives -= 1

if player_lives < 1:

 print("GAME OVER!")

if player_lives <= 0:

 print("GAME OVER!")

if spike_damage > health:

 print("GAME OVER!")

if player_exp >= 1000:

 player_level += 1

 print("LEVEL UP")

if has_key != true:

 print("DOOR LOCKED")

In the preceding code, our game produces different output based on the value of the variables

being compared.

To make our game respond differently based on certain conditions, we can use the if, elif, and

else keywords. The if statement checks if a condition is true and runs the code inside it. If the

condition is false, we can use elif (short for else if) to check another condition. Finally, else

is used as a default that runs if none of the previous conditions are true.

Chapter 4 103

For example, let’s say we want to check the number of lives a player has and respond accordingly,

as shown in the following code:

if player_lives > 0:

 print("Keep playing!")

elif player_lives == 0:

 print("Game Over!")

else:

 print("Invalid number of lives!")

The preceding code allows the player to continue playing if they have lives remaining; if they do

not, it prints the game over and, for abnormal values, it shows an error.

Practice exercise
To get some experience with the concept, write a script that checks the player’s health using the

health variable we created. Display different messages based on their health status.

•	 If health is 80 or more, print "You're in great shape!"

•	 If health is between 50 and 79, print "You're doing okay, but be careful!"

•	 If health is below 50, print "Warning! Your health is low!"

•	 If health is 0 or less, print "Game over! You've run out of health."

Use if, elif, and else statements to complete this task.

The solution is given here:

Check the player's health and print the appropriate message

if health >= 80:

 print("You're in great shape!")

elif health >= 50:

 print("You're doing okay, but be careful!")

elif health > 0:

 print("Warning! Your health is low!")

else:

 print("Game over! You've run out of health.")

The preceding code displays the correct message depending on the value of the player’s health

variable.

Scripting with GDScript104

In the next section, we’ll dive into creating custom functions in Godot. You’ll learn how to define

your own functions to organize your code, make it reusable, and add unique functionality to your

game projects.

Using custom functions
Part of keeping our code clean and organized involves creating our own custom functions. Cus-

tom functions allow us to break down our code into smaller, reusable pieces, making it easier to

understand and maintain. We aren’t limited to only using functions that come with Godot—we

can define our own to perform specific tasks in our game.

To create a custom function, we use the func keyword, followed by the function name (this is

how we will identify the function in the code). After the name, we add two round brackets ()

that can hold any information (parameters) we want to pass to the function. Finally, we end the

function header with a colon (:), and on the next line, we define what the function will do (this

is called the function body).

We already have a variable that stores how much damage a spike does. What if we wrote a custom

function that could be called every time we are hit by a spike:

Custom function to handle spike damage and return remaining #health

func take_spike_damage():

 health -= damage_amount

 if health <= 0:

 print("Game Over")

 return 0 # Return 0 if health is depleted

 else:

 print("Player's current health: ", health)

The preceding code can be called (asked to run) whenever the player takes damage from a spike.

For the preceding code to work, we need to move spike_damage to the top to make it a class

(script) variable. This is demonstrated here:

extends Node2D

var health : int = 100

var jump_strength : float = 220.5

var is_dashing : bool = true

var player_name : String = "Riptide"

var player_level : int = 23

Chapter 4 105

var player_exp : float = 123.45

var has_key : bool = false

var spike_damage : int = 10

In the preceding code, the spike_damage variable has been moved to the top of the program to

change its scope to include the entire script (class).

To run the code in our take_spike_damage function, we need to call it. This will depend on the

context of the game but, for our example, we will call it from the _ready function:

Called when the node enters the scene tree for the first time.

func _ready():

 take_spike_damage()

In the preceding code, we call the take_spike_damage() function (ask it to run), and all the code

inside the function runs, and the game is updated with the result.

In the upcoming section, we’ll explore arguments and parameters in functions. You’ll learn how to

pass information into your custom functions to make them more flexible and dynamic, allowing

you to control their behavior based on the values you provide.

Arguments and parameters or function inputs
Functions can accept input values and produce output, allowing us to write adaptable, reusable

code. These inputs, referred to as parameters in GDScript, let us pass information to a function

when it’s called. The data we send to the function is known as an argument, and the parameter

works like a placeholder variable that holds this value within the function.

For example, in Godot’s built-in _process(delta) function, the delta parameter is passed in,

representing the time elapsed since the previous frame. Parameters make it possible for functions

to behave differently depending on the data they receive, giving us flexibility in our code.

Scripting with GDScript106

We can update the take_spike_damage() function to accept a parameter that defines how much

damage a spike causes. This way, the function can handle different damage values whenever it’s

called:

Custom function to handle spike damage with a parameter

func take_spike_damage(damage_amount):

 health -= damage_amount

 if health <= 0:

 print("Game Over")

 else:

 print("Player's current health: ", health)

In the preceding code, we have added a parameter to our function so that we can change the

amount of damage each spike does.

Remember, we must change the call to the function too since we must provide a value for the

damage amount:

Called when the node enters the scene tree for the first time.

func _ready():

 #Calling the function with different damage values

 take_spike_damage(10) #Spike causes 10 damage

 take_spike_damage(5) #Spike causes 5 damage

In the preceding code, we have to remember to provide the amount of damage the spike does to

our function.

In the next section, we’ll look at how functions can return output in Godot by using the return

keyword. This allows a function to send back a result or value after performing its task, which

can then be used elsewhere in your game.

Functions can return output
Functions don’t just accept inputs; they can also produce outputs. In programming, this is achieved

through return values. A return value is the result that a function provides after performing its

task. By using the return keyword, you can send a value back to the place where the function

was called. This allows functions to perform calculations or data processing and then give back

the result for further use.

Chapter 4 107

We can modify our previous example to include a function that calculates and returns the player’s

remaining health after taking damage. This will demonstrate how functions can provide useful

results.

Custom function to handle spike damage and return remaining health

func take_spike_damage(damage_amount) -> int:

 health -= damage_amount

 if health <= 0:

 print("Game Over")

 return 0 # Return 0 if health is depleted

 else:

 print("Player's current health: ", health)

 return health # Return the remaining health

In the preceding code, we have changed our function to return the value of the player’s health

variable.

We also need to modify our call to the function and store and use the result:

Called when the node enters the scene tree for the first time.

func _ready():

 #Example of using the function and storing the returned value

 var remaining_health = take_spike_damage(10)

 #Assume damage_amount is 10

 print("Remaining Health: ", remaining_health)

In the preceding code, we now store the result returned by the function in a new variable, which

we then print out.

It is time to practice what was learned.

Create a function to manage player health based on damage taken. To do that, follow these steps:

1.	 Create a function called calculate_health_after_damage.

2.	 This function should have two parameters: current_health and damage.

3.	 Inside the function, subtract damage from current_health and return the new health

value.

Scripting with GDScript108

This is an example of the use of the function when calling it:

#Called when the node enters the scene tree for the first time.

func _ready():

 var player_health = 100

 var spike_damage = 20

 var new_health = calculate_health_after_damage(player_health, spike_
damage)

 print("Player's new health:", new_health)

In the preceding code, we store the result of calculating the player’s health after taking damage

in a new variable and we then print out that result.

The solution to the exercise is shown here:

Define the function to calculate the player's health after taking damage

func calculate_health_after_damage(current_health: int, damage: int) ->
int:

 var new_health = current_health - damage

 return new_health

In the preceding code, the solution shows that we have to declare a function that accepts two

arguments, subtracts them, and returns the result as an integer.

Summary
In this chapter, we explored essential GDScript concepts, from creating, editing, and saving

scripts to understanding variables, data types, and the order of execution. We also delved into

mathematical and logical operators, control flow using if, elif, and else statements, and the

importance of built-in and custom functions such as ready and process. These skills are crucial

for scripting fundamental game mechanics, giving you the tools to start building dynamic, in-

teractive game worlds.

In the next chapter, we’ll take a deep dive into vectors—a vital concept for game development

that underpins movement, direction, and positioning in your game. Understanding vectors is

the next logical step, as they play a key role in controlling the flow and interaction of objects in

2D or 3D space.

Chapter 4 109

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/godot-4-game-dev

https://packt.link/godot-4-game-dev

Part 2
Working with the

Godot Engine
In this part of the book, you’ll deepen your practical knowledge of how to work effectively with

the Godot engine. We’ll begin by demystifying vectors, one of the most essential tools in any

game developer’s toolkit, through clear explanations and real-world examples. Then, you’ll put

your skills into action by building a complete 2D mini-game over two chapters. This hands-on

project will guide you through the full game creation process, from scripting player mechanics

to designing levels and handling game logic. By the end of this part, you’ll have the experience

and confidence to start building your own 2D games in Godot.

This part of the book includes the following chapters:

•	 Chapter 5, Understanding Vectors

•	 Chapter 6, Creating a 2D Mini-Game in Godot – Part 1

•	 Chapter 7, Creating a 2D Mini-Game in Godot – Part 2

5
Understanding Vectors

Vectors are one of the most fundamental concepts in game development, helping developers

represent direction, movement, and positioning in both 2D and 3D space. In this chapter, you’ll

dive into the basics of what vectors are and why they play a vital role in game mechanics. You’ll

learn how to use vectors effectively within the Godot engine—both through the visual interface

and in code—to control and influence your game objects.

In this chapter, we’re going to cover the following main topics:

•	 What are vectors?

•	 Using vectors in Godot

By the end of this chapter, you will have gained a practical understanding of how to manipulate

vectors, apply them to movement, and solve game development problems that involve direction

and position. Whether you’re developing a platformer, an RPG, or a 3D adventure game, mas-

tering vectors will provide you with powerful tools to control player movement, enemy AI, and

environmental interactions.

Technical requirements
This chapter’s code files are available here in the book’s GitHub repository: https://github.com/
PacktPublishing/Godot-4-for-Beginners/tree/main/ch5/vectors

Visit this link to check out the video of the code being run: https://packt.link/6sNsX

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch5/vectors
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch5/vectors
https://packt.link/6sNsX

Understanding Vectors114

What are vectors?
If you’re familiar with the idea of a point, think of a vector as similar but with a key difference:

a vector not only represents a position in space but also includes information about direction and

magnitude (how far and in what direction it moves from its starting point, or origin). A point, on

the other hand, is just a location and doesn’t include any information about direction or move-

ment. This is shown in Figure 5.1:

Figure 5.1 – Demonstration of a vector versus a point in 2D space

In Figure 5.1, the vector is shown as an arrow. The arrowhead indicates the direction in which the

vector is pointing, while the length of the arrow (from the tail to the head) represents its magni-

tude, or how far it extends from its starting point. The point at position (8,5) is a static location

and has no direction or magnitude.

Chapter 5 115

If we draw an arrow from the origin to the point that we defined, we have created a vector. This

is shown in Figure 5.2:

Figure 5.2 – A vector has a direction (angle) and a magnitude

In video games, vectors are used to represent a player’s velocity, control their aiming direction,

and determine their field of view (the direction they are facing)—all with a single vector. At the

same time, we use a point to track the player’s position continuously. This is shown in Figure 5.3:

Figure 5.3 – A point representing the current position of the player

In Figure 5.3, we can see that the player is 2 units east of the origin and 1 unit north.

Understanding Vectors116

Velocity is the speed of something in a specific direction. In game development, it’s used to de-

scribe how fast and in what direction an object, such as a player or enemy, is moving. Velocity is

often represented by a vector, which shows both the speed (magnitude) and direction of movement.

If we wanted our player to move up and to the left, we could use a velocity vector of (-2,3) to do

so. This is represented in Figure 5.4:

Figure 5.4 – A vector depicting the velocity of the player

In Figure 5.4, the velocity vector indicates that the player will move 2 units left and 3 units up. Note

that the x coordinate is always given before the y coordinate.

Vectors can also tell us which direction the player is facing. Figure 5.5 shows how a vector can be

used to indicate the direction the player is facing in the game.

Figure 5.5 – A vector to indicate direction

Chapter 5 117

In Figure 5.5, the direction vector tells us that the player is pointing to the right (rotated 90 degrees).

On their own, vectors are just numbers—they don’t have much meaning without context. For

example, the vector (1, 0) could represent direction, position, or velocity depending on how it’s

used. To make these vectors meaningful, we need to assign units. In Godot, 2D units are measured

in pixels, while 3D units are measured in meters.

For instance, if we have a player character in a 2D game, the vector (1, 0) represents a movement

to the right. In this case, the following applies:

•	 The “1” means the player moves one unit (or pixel) in the horizontal direction (x axis)

•	 The “0” means the player doesn’t move up or down (y axis)

If the player moves according to this vector in every frame, the character will steadily move to

the right by 1 pixel each frame.

When we only want direction without caring about the distance or speed, we can normalize the

vector. A normalized vector has a length (or magnitude) of 1 and still points in the same direction.

This is especially useful when combining direction with other values, such as when multiplying

a direction vector by a speed to get velocity.

For example, if we normalize the vector (2, 0), we get (1, 0). It still points right, but now has a

standard length of 1, making it easy to scale consistently in game logic.

Understanding Vectors118

Coordinates in Godot
An important quirk of screens is that the origin (0, 0) is in the top-left corner of the screen. This

means that y is negative as we move upward and positive as we go downward. This is shown by

the vector (4, 3) in Figure 5.6:

Figure 5.6 – Computers render the screen downward from the top left (This image is by Godot
Engine contributors and is licensed under CC BY 3.0)

In Figure 5.6, the vector (4, 3) has a direction or rotation of angle theta and a length or magnitude

of m. In this case, the arrow is a position vector indicating a point in space relative to the origin.

One important thing to remember about vectors is that they usually show direction and size (how

far or fast something moves), but not the starting position. Think of a vector like an arrow: it

shows you which way to go and how fast, but not where you are on the map. To know the actual

position of an object, you need to combine the vector with a starting point or reference.

However, there’s a special case that’s worth mentioning: position vectors. In mathematics and

game development (including Godot), a vector such as Vector2(2, 3) can also represent a po-

sition in 2D space. This type of vector is understood to start at the origin (0, 0) and point to the

coordinates (2, 3). In this case, the vector tells you where something is located relative to the origin.

So, depending on the context, vectors can do either of the following:

•	 Show how far and in what direction something is moving (velocity or force)

•	 Indicate a position relative to the origin (like coordinates in space)

Chapter 5 119

Understanding this difference helps avoid confusion, especially when working with movement

systems, physics, or spatial reasoning in your games. If you invert a position vector; you effectively

point back from the position to the origin—another helpful way to understand how vectors work

in different contexts.

For example, in a game, a vector can tell you which way a player is moving and how fast, but the

player’s starting position is given separately as a point. This is demonstrated in Figure 5.7:

Figure 5.7 – Two identical vectors (This image is by Godot Engine contributors and is licensed
under CC BY 3.0)

In Figure 5.7, both vectors represent a point of 4 units to the right and 3 units below the starting

point.

We now have a conceptual understanding of vectors. In the next section, we can look at how to

implement them in Godot.

Using vectors in Godot
In Godot, there are two classes to represent vectors. 2D vectors use Vector2 and 3D vectors use

Vector3. Vector2 accepts an x and a y parameter, and Vector3 accepts x, y, and z parameters. Let’s

take a look at Vector2 in more detail.

Vector2 is a class, which means it’s not just a simple data type like a number—it’s a more ad-

vanced structure that includes built-in functions (or methods) to work with 2D coordinates. While

it behaves like a data type because it holds two numbers (x and y), it also allows you to perform

operations such as adding, scaling, or rotating vectors.

Understanding Vectors120

It’s worth noting that Godot handles many values that might seem like simple types as classes.

For example, as mentioned in Chapter 4, even text in Godot is managed by the String class. This

is a bit different from some other engines or languages, where strings are considered basic types

without methods.

So, when you’re working with something such as Vector2, you’re really working with a powerful

tool that’s designed to help you easily manage 2D positions, directions, and movements in your

game, with lots of useful functions built right in.

If we wanted the player to move one unit (or pixel) in the horizontal direction (x axis) and not

up or down at all, and ensure the player moves every frame, we could use the code that follows:

var movement_vector = Vector2(1, 0)

func _process(delta):

 position += movement_vector

The effect of this in Godot is shown by the Sprite2D moving across the screen, as shown in Figure

5.8:

Figure 5.8 – The Godot sprite moves across the screen to the right

Chapter 5 121

Figure 5.8 shows the sprite moving across the screen with the x value changing by 1 each frame

and the y value not changing at all.

It is important to note that we can access the x and y variables of the vector individually using

dot notation, as shown in the following code:

Access the individual x and y components of the position

var x_position = position.x

var y_position = position.y

Display the x and y components in the output console

print("Sprite Position - X: ", x_position, " Y: ", y_position)

In this code, we store the current x and y positions of the sprite in separate variables and then

print them out to see how they change as the sprite moves across the screen.

The effect of this in Godot is shown in the output console as the Sprite2D is moving across the

screen in Figure 5.9:

Figure 5.9 – The console displays the x and y parameters of the vector as the sprite moves

Understanding Vectors122

Figure 5.9 demonstrates how we always have access to the parameters of the vector. We can

use this information to detect when we are near the edges of the Viewport and then reverse the

movement_vector. This will make the sprite bounce off the sides of the screen. Implement this

behavior using the following code:

Store the x and y positions of the edges of the screen

var horizontal_edge = get_viewport_rect().size.x

var vertical_edge = get_viewport_rect().size.y

Check for screen boundaries to reverse direction

if x_position < 0 or x_position > horizontal_edge:

 # Reverse the x direction

 movement_vector.x *= -1

if y_position < 0 or y_position > vertical_edge:

 # Reverse the y direction

 movement_vector.y *= -1

This code successfully restricts or clamps the movement of the sprite so that it remains within

the screen boundary.

We can also perform mathematical operations on vectors such as addition, subtraction, and

multiplication. This is essential because it allows us to manipulate objects’ positions, movements,

and directions in a more dynamic and flexible way. Thankfully, the game engine will perform all

these calculations for you, but it is good to understand what it is doing.

Movement and positioning
In game development, movement and positioning are at the core of creating dynamic and engaging

gameplay. In Godot, vectors are essential tools for defining positions, directions, and velocities in

both 2D and 3D spaces. By understanding how to use vectors, you can move characters, projectiles,

and objects smoothly and accurately within your game world.

This section will introduce you to working with vectors in Godot, showing you how to calculate

directions, handle player movement, and position objects effectively. These concepts form the

foundation for creating responsive and realistic game mechanics.

Chapter 5 123

Vector addition
We use addition to update an object’s position by adding a movement vector to its current po-

sition. For example, when you move a character across the screen, you add a direction vector to

the character’s position vector in each frame.

Vector addition is shown in Figure 5.10. The corresponding x and y values are added together

(Vector A(2,5) in blue added to Vector B(3,1) in green, which results in Vector C(5,6) in red).

Figure 5.10 – Adding Vector (2,5) to Vector (3,1), resulting in Vector (5,6)

Figure 5.10 also shows that the order in which you add the vectors doesn’t matter, as the resulting

vector will always be the same.

Understanding Vectors124

To understand how this works in a game, we can consider the example of a character jumping.

This is shown in Figure 5.11:

Figure 5.11 – Jumping using vector addition

To understand the jump mechanic, we can look at it frame by frame. Gravity is always pulling the

character downward; therefore, the acceleration vector is always (0, -1).

The starting position is (0,0). When the jump button is pressed, the velocity vector is set to (1,3)

and the character moves up and to the right. If we add the velocity to the position vector, we get

a new velocity vector of (1,3). However, we must add the acceleration vector, and the new result

is velocity of (1,2). If we continue in this manner, we can move through the entire jump cycle.

Vector subtraction
Subtraction helps calculate the distance or difference between two points, such as the distance

between a player and an enemy, which can be used for collision detection or AI behaviors.

Vector Subtraction works in a similar way—subtracting each component individually, vector

subtraction helps determine a vector that points from one position to another.

For example, imagine a ball is positioned at (1,2) and a hole is at (4,3). To find the direction the

ball needs to roll to reach the hole, you can find the difference by subtracting the ball’s position

from the hole’s position.

Chapter 5 125

This is illustrated in Figure 5.12:

Figure 5.12 – Vector subtraction

Figure 5.12 demonstrates how vector subtraction can be used to calculate the length and direction

needed to reach a certain point.

The next fundamental operation we perform with vectors is multiplication.

Vector multiplication
Vectors have values for both direction and magnitude, but a value that only represents magnitude

is called a scalar.

When we talk about vectors, each number inside the vector is called a component, and a single num-

ber itself is called a scalar. For example, (3, 4) is a vector, while 5 is a scalar. In games, multiplying

a vector by a scalar can be useful for changing its size (magnitude) without changing its direction.

A normalized vector is a special kind of vector that has a length (or magnitude) of exactly 1. It still

points in the same direction, but its size has been reduced to 1 unit. This is often used to represent

direction without affecting distance or speed.

For example, if a player is facing right, we might use a normalized direction vector such as (1,

0). If we then multiply this by a scalar value, such as 100, we get (100, 0), which can represent a

position of 100 pixels to the right. This is useful for calculating a target or arrival position:

var direction = Vector2(1, 0).normalized()

var distance = 100

var arrival_position = player.position + direction * distance

We can also see how vector multiplication can be used to scale an image. Imagine the player gets

a power-up that makes them grow. The player’s size is represented as a vector, say (1, 2), meaning

they have a width of 1 and a height of 2. If the power-up makes the player grow to twice their size,

we multiply the size vector by a scalar of 2.

Understanding Vectors126

This is illustrated in Figure 5.13:

Figure 5.13 – The effect of scaling (scalar multiplication)

In Figure 5.13, multiplying the size vector by a scalar makes the player twice as large in both width

and height, but their overall shape and proportions stay the same.

Multiplying a vector by a scalar effectively lengthens the vector without changing direction. This

can also be demonstrated with arrows, as shown in Figure 5.14:

Figure 5.14 – Illustrating scalar multiplication (This image is by Godot Engine contributors
and is licensed under CC BY 3.0)

Figure 5.14 shows that multiplying a vector by a scalar will result in a longer vector. It is also im-

portant to note that multiplying a negative scalar will reverse the direction.

Chapter 5 127

Vector length
The distance from the origin to the x and y positions of the vector is known as the length of the

vector. This is also known as the magnitude of the vector. To find this length, Godot has a built-

in length() function:

var vector_length: float = vector.length()

To understand how the length() function works, think of this example. If a character is moving

in a 2D platformer with a velocity vector v(4,3), we might want to determine how fast the char-

acter is moving to adjust animations or implement effects such as dust clouds when they land.

To find the character’s speed, we calculate the length (or magnitude) of the velocity vector v. We

can visualize this vector as forming a right triangle, where one side is 3 (the x component) and the

other side is 4 (the y component). Using the Pythagorean theorem, we can find the hypotenuse,

which represents the speed of the character. The formula for the magnitude of a vector with

components (x, y) and the resulting speed is shown in Figure 5.15:

Figure 5.15 – Using the Pythagorean theorem to determine vector magnitude

Figure 5.15 demonstrates how the length() function works to calculate the magnitude of a vector.

This means the character is moving at a speed of 5 units per second in the game world. This is

visualized in Figure 5.16:

Figure 5.16 – Visual representation of the length

Figure 5.16 demonstrates how the length of a vector is calculated. Note that this also applies to

3D vectors.

Understanding Vectors128

Distance
Often, we want to find the distance between two objects, such as the player and a motion sensor,

to determine whether the player is close enough to trigger an alarm. We can do this using the

distance_to() function in Godot. For instance, if the player is at position (3,3) and the motion

sensor is at position (1,2), we can calculate the distance between them to check whether the player

is within range of the sensor, which could activate the alarm.

The math behind the distance_to() function combines vector subtraction and vector length. To

calculate the distance [D], we subtract the player vector [P] from the motion sensor vector [M]

and then calculate the length of the resulting vector:

D = (P - M).length()

D = √[(3 - 1)² + (3 - 2)²] = √[4 + 1] = √5 ≈ 2.24

This equation is demonstrated in Figure 5.17:

Figure 5.17 – Calculating the distance to an object

Figure 5.17 shows how the distance to another object is calculated. It doesn’t matter if you subtract

the player vector from the motion sensor vector or the other way around; the result is the same.

Normalization
When working with directions (rather than positions or velocities), it’s essential that they have

a unit length, meaning a length of 1. This simplifies our calculations.

For example, imagine a robot that needs to move in the direction of (1,0) to deliver a package at a

constant speed of 20 m/s. What would the velocity of the robot be? Because the direction vector

has a length of 1, we can easily multiply it by the robot’s speed to calculate its velocity: (20,0). If

the direction vector had any other length, the robot would move either too fast or too slow.

Chapter 5 129

A vector with a length of 1 is called normalized. So, how do we normalize a vector (set its length

to 1)?

It’s simple: we just divide each component by the vector’s length.

Since this is such a common operation, Godot has a built-in function to do it for us. The function

is called normalized() and can be used in our example as follows:

extends Node2D

Called when the node enters the scene tree for the first time.

func _ready():

 # Normalize direction vector so it has a length of 1

 direction = direction.normalized()

 # Calculate velocity by multiplying direction by speed

 velocity = direction * speed

There is still a lot to learn about vectors, and there are other operations such as the dot product

and the cross product. All of this is part of the field of mathematics called linear algebra. However,

you now have enough of an understanding to make great Godot games, and the engine will do

all the mathematics for us!

Summary
In this chapter, we explored the fundamental concept of vectors and their crucial role in game

development. You learned how to manipulate vectors within the Godot engine, applying vector

addition, subtraction, and multiplication to control movement and positioning. We also covered

important topics such as calculating vector length, determining distances between objects, and

normalizing vectors for consistent directionality.

By mastering these concepts, you are now equipped to use vectors effectively in your game proj-

ects, enhancing gameplay mechanics and interactions.

In the next chapter, we are going to turn from theory to practice as we create our first 2D mini

game in Godot!

Understanding Vectors130

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

6
Creating a 2D Mini-Game in
Godot – Part 1

In this chapter, you’ll take a major step by building your very first 2D platformer level in Godot.

You’ll learn how to design and construct a level using a tilemap, and then populate it with key

gameplay elements: a player character that moves and jumps, a patrolling enemy to avoid, and

collectible items to reward exploration. You’ll also set up a checkpoint system to allow players

to progress through the level.

This experience will give you the hands-on practice needed to take your game development skills

to the next level, as you’ll learn how to manipulate key elements of level design and gameplay

mechanics in Godot. With this knowledge, you’ll be able to design more complex levels and

gameplay features in future projects.

In this chapter, we’re going to cover the following main topics:

•	 Building the level with a TileMap

•	 Creating and controlling the player

•	 Adding the CharacterBody2D template for the Player script

•	 Cleaning the code

By the end of this chapter, you’ll be able to create an interactive, fully playable platformer level

and understand how these components work together to form the foundation of many platformer

games.

Creating a 2D Mini-Game in Godot – Part 1132

Technical requirements
To start with the chapter, you should know how to do the following:

•	 Create a new Godot project

•	 Create nodes

•	 Create scenes

You should also know about variables and functions for use in GDScript (see Chapter 4).

This chapter’s code files are available here in the book’s GitHub repository: https://github.com/
PacktPublishing/Godot-4-for-Beginners/tree/main/ch6

Visit this link to check out the video of the code being run: https://packt.link/DcrOS

The game assets used in this project are released under a Creative Commons Zero (CC0) license

by Pixel Frog. Pixel Frog has allowed us to distribute, remix, adapt, and build upon the material

in any medium or format, even for commercial purposes.

They can be found here:

•	 Pixel Adventure: https://pixelfrog-assets.itch.io/pixel-adventure-1

•	 Pixel Adventure 2: https://pixelfrog-assets.itch.io/pixel-adventure-2

Building the level with a TileMap
Building 2D levels with TileMaps is an efficient and organized way to create game environments

by reusing small, pre-designed tiles. This approach not only saves time and resources but also

allows for easy adjustments and consistent visuals across your level design.

In this section, we’ll build the foundation of our 2D platformer by creating a level with a TileMap,

allowing us to efficiently design and organize the game environment. TileMaps are essential

because they make it easy to create detailed, grid-based levels while optimizing performance,

keeping game worlds manageable and visually consistent.

Let’s begin the process of building our level by creating a new scene and adding essential nodes.

Follow these steps to set up a functional, well-organized level using a TileMapLayer:

1.	 Create a new Godot Project and give it a name – I have called it PixelAdventure.

2.	 We need a scene to represent the first level of the game. To do this, we create a new 2D

scene, which will have Node2D as the root. Rename Node2D to Level1.

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch6
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch6
https://packt.link/DcrOS
https://pixelfrog-assets.itch.io/pixel-adventure-1
https://pixelfrog-assets.itch.io/pixel-adventure-2

Chapter 6 133

3.	 We are now ready to add a TileMapLayer node to the Level1 scene. A TileMapLayer

node uses a TileSet, which contains a list of tiles that are used to create grid-based maps.

TileMaps are used in 2D game development to efficiently create large, consistent levels

by reusing small, predefined tiles. This improves the performance of the game and also

makes it easy to edit and customize levels.

4.	 Add a new TileMapLayer node as a child of Level1. Your scene tree will resemble. Figure

6.1 shows this as follows:

Figure 6.1 – Scene tree after adding the TileMapLayer node

5.	 Every TileMapLayer node needs a TileSet so that we can place individual tiles in the

scene to create the level. To create the TileSet, select the TileMapLayer node, then, in the

Inspector, find the Tile Set property and click on New TileSet, as shown in Figure 6.2:

Figure 6.2 – Creating a new Tile Set

6.	 Then click on TileSet, which will make the TileMap and TileSet tabs at the bottom center

of the screen visible, as shown in Figure 6.3:

Figure 6.3 – The TileSet and TileMap tabs

Creating a 2D Mini-Game in Godot – Part 1134

7.	 In the Terrain folder of the Pixel Adventure assets, there is an image file called Terrain

(16 x 16).png. Create a folder in your Godot file system called Assets, then create a

subfolder called TileMap. Drag and drop the Terrain image file into the TileMap folder,

as shown in Figure 6.4:

Figure 6.4 – Terrain.png added to TileMap folder

8.	 Now that the image is in our FileSystem, we can drag and drop it into the TileSet tab,

which will allow us to use the individual tiles. This is shown in Figure 6.5:

Figure 6.5 – The TileSet is now loaded

Chapter 6 135

9.	 We will not change anything on the TileSet at the moment. Our goal is to paint the level.

To do this, switch over to the TileMap tab and press D or click on the Paint button. Now

select tiles in the map and draw them in the Viewport onscreen, as shown in Figure 6.6:

Figure 6.6 – Painting tiles by selecting tiles and using the Paint tool

Figure 6.6 shows how you can use the Paint tool to select tiles and then paint them into

the scene by clicking. You can also hold shift + click to paint multiple tiles at the same time.

Go ahead and paint a level. You can do anything you like, and you are welcome to copy

my level, which is shown in Figure 6.7:

Figure 6.7 – An example of a contained level

Creating a 2D Mini-Game in Godot – Part 1136

As Figure 6.7 shows, we now have a level for players to explore. It is important to understand that

this level is currently purely decorative – we cannot even detect collisions as this world has no

physics! In the next section, we will add the player and then return to our TileSet to implement

physics.

Creating and controlling the player
Now that we have a world, we need a player to explore it! In this section, we’ll focus on building

the foundation for a fully interactive 2D level. Each step will help us create a playable environment

while introducing essential Godot tools and techniques.

First, we’ll add a background to provide visual context for the level. Then, we’ll create and con-

figure a CharacterBody2D node as our player, complete with an AnimatedSprite2D node to

bring it to life and CollisionShape2D node to enable physics interactions. After setting up the

player’s animations, we’ll conclude by scripting the character controller, allowing the player to

move and interact with the level.

By the end of this section, you’ll have a functional and visually appealing player character ready

to explore the 2D world you’ve created.

Adding the background
We will follow the given steps to add the background to the level:

1.	 Add a new TextureRect node as a child of Level1. Create a new folder in the file system

called Background and add the images from the Background folder of your downloaded

assets to it.

2.	 In Inspector, use the Brown.png background image for Texture. Set the Expand Mode

property to Keep Size and the Stretch Mode property to Tile.

Chapter 6 137

3.	 Now, drag TextureRect to fill the entire Viewport and more if you wish. We have just

created a tiled background.

Figure 6.8 – Changing the properties of TextureRect

4.	 To ensure that the background appears behind every other node in the scene, position the

TextureRect node at the top of the scene tree as shown in Figure 6.9:

Figure 6.9 – Lower nodes appear in front of higher nodes

Creating a 2D Mini-Game in Godot – Part 1138

Figure 6.9 demonstrates the order in which nodes are handled in the tree. It is in a top-

down fashion, starting at the root and going down each branch in turn. The level now

has a background and looks more polished.

Figure 6.10 – A background helps to round off a level

The player character is now ready to make an appearance. Create a new scene and add a

CharacterBody2D node as the root, then rename it to Player. Add an AnimatedSprite2D node

as a child as shown in Figure 6.11:

Figure 6.11 – Adding an AnimatedSprite2D node to the player

Figure 6.11 shows the AnimatedSprite2D node. This is a sprite node that contains multiple tex-

tures as frames to play for animation. In the next section, we will set up various animations for

the player’s actions.

Chapter 6 139

Setting up the player animations
To animate a sprite, we use multiple frames that depict the sprite at various stages of motion.

These frames are often grouped together in a single image known as a sprite sheet. To animate

the sprite, we first import the sprite sheet and then divide it into individual frames. To do this,

select the AnimatedSprite2D node, and in Inspector, on the Sprite Frames property, click on

New SpriteFrames. This is shown in Figure 6.12:

Figure 6.12 – New SpriteFrames

Clicking on SpriteFrames in Inspector, as in Figure 6.12, will open the SpriteFrames area at the

bottom of the screen (see Figure 6.13). This is the space where we can import frames and create

new animations.

Figure 6.13 – The SpriteFrames area

Creating a 2D Mini-Game in Godot – Part 1140

As shown in Figure 6.13, we currently have only the default animation, and no images or frames

associated with it. We will now create animations for all the players’ actions and then import the

sprites associated with each action from their sprite sheet. To do this, follow these steps:

1.	 Start by renaming the default animation to idle. Then click on the Add Animation button

or press Ctrl + N. Rename that animation to run.

2.	 Create the following list of animations: double_jump, fall, jump, and wall_slide. These

are shown in Figure 6.14:

Figure 6.14 – All the animations for the player actions

Now that we have the animation names ready, as in Figure 6.14, we can bring in the images

associated with each one.

3.	 In the FileSystem, create a new folder called Player. Now, find the Main Characters

folder in the assets you downloaded from Pixel Frog and drag the images for your player

character into the Player folder in the file system. I chose to use the ninja frog character.

Select the idle animation and then click on the Add frames from sprite sheet button or

press Ctrl + Shift + O.

4.	 Now select the idle image file in your Assets folder. You must count the player images

and update the Horizontal and Vertical frame properties as required. Then click on the

Select All button, followed by the Add x Frame(s) button. This is shown for the idle frames

of the ninja frog in Figure 6.15:

Chapter 6 141

Figure 6.15 – Setting the Horizontal and Vertical Frames and adding them to the
animation

5.	 After cutting the individual frames from the image (sprite sheet) as in Figure 6.15, your

SpriteFrames window will update with the images to be used for the idle animation.

This is shown in Figure 6.16:

Figure 6.16 – The frames for the idle animation

As you can see in Figure 6.16, there are controls for the animations in the bar at the top. I

have set the idle frame rate to 8 FPS, and looping is on. You can play with these settings

to find the ones that you like. You can see this in Figure 6.17.

Figure 6.17 – Animation controls with looping and FPS highlighted

Creating a 2D Mini-Game in Godot – Part 1142

To set up the rest of the player animations, follow and repeat the same steps as you have done

for the idle animation. Our next task will be to ensure that the player can collide with objects

by assigning them a hitbox.

Detecting collisions
Detecting when and where objects collide in a game, as well as identifying which objects are

involved, is a key aspect of game development. In Godot, we handle this by assigning each object

to a CollisionShape2D node. This node allows us to define and adjust the shape that surrounds

the object, ensuring accurate collision detection.

The following are the steps for assigning a CollisionShape2D node:

1.	 Add CollisionShape2D node as a child of Player.

2.	 Choose RectangleShape2D for the Shape property in Inspector and resize it to fit your

player. This rectangle forms the bounding box for collisions on the player and is shown

in Figure 6.18:

Figure 6.18 – Assigning RectangleShape2D to the CollisionShape2D node and result-
ing bounding box

As shown in Figure 6.18, anything entering the rectangular collision shape will register a

collision. The shape is not visible during gameplay.

Important note

You may have noticed that the player appears blurry in the scene. This is because of

the default texture filter. Click on Project | Project Settings | Rendering | Textures

and change Default Texture Filter to Nearest. This is the best setting for pixel art.

Chapter 6 143

3.	 Save the Player scene as player.tscn, and then drag and drop the file from FileSystem

into the Level1 scene.

You now have a player in your level! However, if you play the game, the player is stationary because

no movement has been implemented yet. We will implement this later.

TileMap collisions
As stated before, our current level is just a painting; none of the tiles have collision detection,

and our player cannot move. To set up collisions on our tiles, we need to add an element to our

physics layers. To do this, follow these steps:

1.	 Select the TileMapLayer node in Inspector and click on Tile Set.

2.	 In the Physics Layers property, click Add Element. This is shown in Figure 6.19:

Figure 6.19 - Adding an element to Physics Layers of a TileSet

Creating a 2D Mini-Game in Godot – Part 1144

Once you have added an element to Physics Layers of the TileSet, as shown in Figure

6.19, your TileSet will have two new properties in Physics Layers – Collision Layer and

Collision Mask. This is shown in Figure 6.20:

Figure 6.20 – Collision Layer and Collision Mask of the TileSet

As can be seen in Figure 6.20, the concept of collision layers and masks in Godot 4 plays a crucial

role in managing collisions and interactions between different elements in the game world. Un-

derstanding how to work with layers and masks is essential for creating complex and interactive

game environments. These will be explained in more detail in the next section.

Make sure you have added two Physics Layers elements, as one set is for ground tiles and the

other will be used for passthrough tiles.

Collision layers and collision masks
Collision layers are categories or groups that an object belongs to, which determine which other

objects it can interact with. By assigning an object to a specific Collision Layer, we place it in a

group that defines its potential interactions. For example, if object X is assigned to layer 1, it’s

treated as part of layer 1. Other objects can then be set up to detect and respond to objects in that

layer, depending on their own collision settings.

Collision masks, on the other hand, define which layers an object can detect and interact with.

For instance, if object X is on layer 1 but has a Collision Mask set to layer 2, object X will only

collide with objects that are on layer 2. This separation between layers and masks allows us to

control which objects interact, making it easy to ensure, for example, that enemies only collide

with players and not each other.

Chapter 6 145

In Figure 6.20, Collision Layer 1 is on, and Collision Mask 1 is on. This means that the objects on

layer 1 will collide with objects on mask 1. This is not very useful as it means that the objects will

collide with themselves (which is impossible), so we will change this soon.

Keeping track of which numbers collide with which can be very difficult and even more so as

your game becomes bigger and more complex. It is therefore recommended that you rename

your layers to represent the things that exist on them.

In our level, most tiles will act as solid objects that the player can stand on and collide with.

However, to make the level more dynamic, some tiles will function as “jump-through” or “pass-

through” platforms. These allow the player to jump up from below and land on the platform. If

the player presses down while on the platform, they will fall back through to the ground below,

adding an extra layer of interaction to the gameplay. This is shown in Figure 6.21.

Figure 6.21 – A jump-through platform

Creating a 2D Mini-Game in Godot – Part 1146

Because some of our tiles need to be solid and some need to be pass-through, we will add a sec-

ond element to Physics Layers of the TileSet, then name the layers so that we can keep track of

the interactions. Do this by clicking on the three vertical dots to the right of the layer numbers

and clicking on Edit Layer Names. I have named Layer 1: player, Layer 2: ground, and Layer 3:

pass_through. This is shown in Figure 6.22:

Figure 6.22 – Two sets of physics layers and the Edit Layer Names button

As shown in Figure 6.22, clicking on Edit Layer Names will allow you to name each layer. You can

see how I have named my layers in Figure 6.23:

Figure 6.23 – Naming the collision layers

Chapter 6 147

If you have a look at Figure 6.22, in the first physics layer, Collision Layer 2 (ground) is on and

Collision Mask 1 (player) is on. This means that the ground will collide with the player.

In the second physics layer, Collision Layer 3 (pass_through) is on, and Collision Mask 1 is on.

This means that the pass-through will collide with the player.

We must also remember to turn on the corresponding layers in the Player node, as shown in

Figure 6.24. This is so that the player looks for collisions on the ground and pass_through layers;

otherwise, they would fall through the level.

Figure 6.24 – Setting the collision layers in Player

In Figure 6.24, we are in the Player node, and we have turned Collision Layer 1 (player) on and

Collision Mask 2 (ground) and Collision Mask 3 (pass_through) on. This means that we have

enabled collisions in the opposite direction so that the player will now collide with the ground

and the pass-through.

The final step of making our level interactive is to paint the tiles in the TileSet as collision tiles.

Creating a 2D Mini-Game in Godot – Part 1148

Painting the tiles
To paint the tiles in the TileSet as collision tiles, follow these steps:

1.	 First, we need to select our TileMapLayer node, open TileSet at the bottom of the screen,

and then click on Paint.

2.	 In Paint Properties, select Physics Layer 0. This is the ground layer. Now, paint over

all the tiles that you want to be ground tiles. I have chosen to leave the far-right tiles as

pass_through tiles and have not painted them as colliders. This is shown in Figure 6.25:

Figure 6.25 – Ground tiles are shaded – note the unshaded tiles reserved for pass-
through

Quick tip: Need to see a high-resolution version of this image? Open this

book in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are

included with your purchase. Scan the QR code OR visit packtpub.com/

unlock, then use the search bar to find this book by name. Double-check

the edition shown to make sure you get the right one.

packtpub.com/unlock
packtpub.com/unlock

Chapter 6 149

3.	 Now switch to Physics Layer 1. This is the layer for the pass_through tiles. Now we will

paint the tiles we saved. You can adjust the collision polygon for each individual tile. Make

sure that you also set polygon_0_one_way to checked. This will allow the player to jump

through the tile from below. Now paint all the pass_through tiles with this brush. This

is shown in Figure 6.26:

Figure 6.26 – Adjusting the collision polygon, one-way collision, and painting the
pass-through tiles

4.	 After adjusting the tiles as shown in Figure 6.25 and Figure 6.26, you can run and test the

game. Although the player can collide with the tiles, there are no forces (such as gravity)

acting on the player, and it does not respond to input – you are basically stuck wherever

you are placed.

In the next section, we will work on scripting the player to control movement, animations, and

interactions, and to apply forces such as gravity.

Adding the CharacterBody2D template for the Player
script
Godot provides pre-written code templates for basic player movement. This saves us from having

to reinvent the wheel and allows us to make games faster.

Creating a 2D Mini-Game in Godot – Part 1150

In the Player scene, select your Player node and click on the Attach New Script icon as shown

in Figure 6.27:

Figure 6.27 – The Attach New Script button

As can be seen in Figure 6.27, you can attach a script to any node in Godot to customize its behavior

by selecting it and clicking on the Attach New Script button. When you click the button, you will

be presented with some options for creating the script, as shown in Figure 6.28:

Figure 6.28 – Note the Basic Movement template being used

As Figure 6.28 shows, the script will be created using a template, which means that there will be

pre-generated code for basic movement and also gravity. The script for this is as follows:

extends CharacterBody2D

const SPEED = 300.0

const JUMP_VELOCITY = -400.0

func _physics_process(delta):

 # Add the gravity

 if not is_on_floor():

Chapter 6 151

 velocity += get_gravity() * delta

 # Handle jump

 if Input.is_action_just_pressed("ui_accept") and is_on_floor():

 velocity.y = JUMP_VELOCITY

 # Get the movement direction and handle deceleration

 var direction = Input.get_axis("ui_left", "ui_right")

 if direction:

 velocity.x = direction * SPEED

 else:

 velocity.x = move_toward(velocity.x, 0, SPEED)

 move_and_slide()

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

packtpub.com/unlock

Creating a 2D Mini-Game in Godot – Part 1152

To make our project more manageable and to give it more structure, we will move a lot of this

code into new functions. Before we do that, we should understand the code line by line:

•	 extends CharacterBody2D: This line tells Godot that this script is extending (or using)

the functionality of a built-in node called CharacterBody2D. This node is specifically

designed for 2D characters that move, such as a player.

•	 const SPEED = 300.0 and const JUMP_VELOCITY = -400.0: These two lines define

constants. A constant is a value that won’t change during the game.

•	 SPEED: This controls how fast the character can move left or right.

•	 JUMP_VELOCITY: This defines how fast and high the character will jump. A negative value

means the character will move upward when they jump.

•	 func _physics_process(delta): This function is called every time the game processes

physics and is fixed at 60 frames per second. The delta parameter represents the time

that has passed since the last frame, ensuring smooth movement.

•	 Next, let’s look at the following block:

Add the gravity

if not is_on_floor():

 velocity += get_gravity() * delta

This block adds gravity to the character if they are not on the floor (in the air):

•	 is_on_floor() checks if the character is touching the ground.

•	 get_gravity() fetches the current gravity value and, multiplying it by delta,

ensures that gravity affects the character at a consistent rate.

•	 The velocity variable is a built-in variable representing how fast the character is

moving in both the x (horizontal) and y (vertical) directions. Adding the gravity

value affects the y velocity (making the character fall).

•	 Let’s look at the next block:

#Handle jump

if Input.is_action_just_pressed("ui_accept") and 	is_on_floor():

 velocity.y = JUMP_VELOCITY

Chapter 6 153

This block handles jumping. It is explained as follows:

•	 Input.is_action_just_pressed("ui_accept") checks if the player pressed the

jump button (which is mapped to "ui_accept" by default). This is the spacebar.

•	 is_on_floor() ensures the player can only jump if they’re standing on the ground.

•	 When both conditions are true, the character’s y velocity is set to JUMP_VELOCITY,

which makes them jump upward.

•	 Now, we move on to the following block:

#Get the movement direction and handle deceleration

var direction = Input.get_axis("ui_left", "ui_right")

This line gets the player’s input for left and right movement:

•	 Input.get_axis("ui_left", "ui_right") returns -1 if the player is holding the

left key, +1 if they’re holding the right key, and 0 if neither is pressed.

•	 Moving on to the next block:

if direction:

 velocity.x = direction * SPEED

else:

 velocity.x = move_toward(velocity.x, 0, SPEED)

If there’s input (the player presses the left or right key), the character’s x-axis velocity is

set to move in that direction at the speed defined by SPEED.

If there’s no input, the character gradually slows down using move_toward(), which makes

the x velocity smoothly approach 0, simulating deceleration.

•	 move_and_slide(): This moves the character based on the velocity. It also handles sliding

along surfaces, such as the floor or walls, making movement smooth.

Now that we understand how the basic movement code works, it’s time to focus on improving its

structure. Writing clean, organized code is crucial for making our projects easier to read, maintain,

and expand as they grow in complexity. To achieve this, we’ll refactor the movement code by

breaking it down into individual functions, which will enhance both readability and reusability.

Creating a 2D Mini-Game in Godot – Part 1154

Cleaning the code
Breaking your code into separate functions is part of the clean code concept, which helps maintain

organization and clarity as your project grows. By structuring your code this way, it becomes

easier to read, test, and debug. Each function focuses on a specific task, reducing redundancy

and making it simpler to spot and fix issues when they arise. This approach also makes your

project more scalable, as adding new features or changes becomes smoother without cluttering

up your core code.

Adding gravity, handling the jump, and getting the direction can all be placed in their own func-

tions. Change your code to match what you see in the following code block:

extends CharacterBody2D

Constants for how fast the player moves and how high they can jump

const SPEED = 300.0

const JUMP_VELOCITY = -400.0

This function runs every physics frame (ideal for movement and
collision)

func _physics_process(delta):

 # Apply gravity if the player is not on the floor

 apply_gravity(delta)

 # Check for jump input and apply jump force

 handle_jump()

 # Handle left/right movement input

 handle_movement(delta)

 # Move the character and handle collisions with the environment

 move_and_slide()

This function adds gravity to the player's velocity

func apply_gravity(delta):

 # Only apply gravity if the player is in the air

 if not is_on_floor():

 velocity += get_gravity() * delta

This function makes the player jump when the jump key is pressed

func handle_jump():

Chapter 6 155

 # Only allow jumping if the player is currently on the ground

 if Input.is_action_just_pressed("ui_accept") and is_on_floor():

 velocity.y = JUMP_VELOCITY

This function handles horizontal movement input

func handle_movement(delta):

 # Get the left/right movement input as a value between -1 and 1

 var direction = Input.get_axis("ui_left", "ui_right")

 # If there is movement input, update the velocity in that direction

 if direction:

 velocity.x = direction * SPEED

 else:

 # If no input, gradually slow the player down to a stop

 velocity.x = move_toward(velocity.x, 0, SPEED)

The code functions in the same way as before, but now specific actions reside in their own func-

tions, so it is easier to find errors and make improvements.

The code is now clean and broken down into smaller and more maintainable parts. In the next

chapter, we will be customizing more of the players’ behaviors and playing the animations. We

will also add a collectible, an enemy, and a checkpoint to complete the level.

Summary
In this chapter, we covered essential steps in building your first 2D platformer level in Godot. We

started by setting up a TileSet within the TileMapLayer node with collision layers and painting

the level using the TileMap system. From there, we created the player character, importing the

necessary animated sprite frames for different animations. With the character in place, we im-

plemented a default script using Godot’s CharacterBody2D template. Finally, we took the time

to clean and organize the code by splitting it into individual functions, a key part of following

the clean code principles.

In the next chapter, we will animate the player and code special abilities such as double-jump

and wall sliding. We will also set up collectible items, an enemy to defeat, and a checkpoint to

reach to finish the level.

Creating a 2D Mini-Game in Godot – Part 1156

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/godot-4-game-dev

https://packt.link/godot-4-game-dev

7
Creating a 2D Mini-Game in
Godot – Part 2

In the previous chapter, we guided you through the process of creating your first complete 2D

platformer level in Godot. We built the level using a TileMap, set up the player character with

animations, and cleaned up the default basic movement script. Now, it’s time to take things further

by adding more complex mechanics and refining how the player interacts with the game world.

In this chapter, you’ll learn how to trigger player animations directly through code. We’ll also

dive into custom behaviors such as wall-sliding, double-jumping, and falling through platforms—

common mechanics in many platform games. We will also add collectible items and a patrolling

enemy. Finally, we’ll script a checkpoint system for completing levels, allowing players to progress

through the game.

In this chapter, we’re going to cover the following main topics:

•	 Controlling player animations with code

•	 Wall-sliding and double-jumping mechanics

•	 Falling through platforms

•	 Adding collectible items

•	 Adding a patrolling enemy

•	 Implementing level completion

By the end of this chapter, you’ll have a deeper understanding of how to bring your game me-

chanics to life with code and create a more dynamic and engaging platformer experience.

Creating a 2D Mini-Game in Godot – Part 2158

Technical requirements
By this point in the book, you should know how to do the following:

•	 Create nodes

•	 Create scenes

You should also know about variables and functions for use in GDScript (see Chapter 4).

This chapter’s code files are available here in the book’s GitHub repository: https://github.com/
PacktPublishing/Godot-4-for-Beginners/tree/main/ch7

Visit this link to check out the video of the code being run: https://packt.link/goVK2

The game assets used in this project are released under a Creative Commons Zero (CC0) license

by Pixel Frog. Pixel Frog has allowed us to distribute, remix, adapt, and build upon the material

in any medium or format, even for commercial purposes.

They can be found here:

•	 Pixel Adventure 1: https://pixelfrog-assets.itch.io/pixel-adventure-1

•	 Pixel Adventure 2: https://pixelfrog-assets.itch.io/pixel-adventure-2

Controlling player animations with code
Animations play a crucial role in bringing your game to life, making player actions feel smooth

and responsive. In this section, we’ll explore how to trigger different player animations in code.

By learning how to control animations programmatically, you’ll gain the ability to seamlessly

transition between movement states such as idle, running, and jumping, enhancing the overall

feel and polish of your game.

Take a moment to consider the conditions that will trigger each animation that we created in

the previous chapter. We should try to imagine what will cause the animation to play so that we

can implement it in the code:

•	 The idle animation is triggered when the player is stationary (both x and y velocities are 0).

•	 The run animation is triggered when the player moves left or right. To ensure the sprite

faces the correct direction, we’ll flip it based on movement direction.

•	 The fall animation is triggered when the player is moving downward (the y velocity is

increasing) and is not wall-sliding.

•	 The jump animation plays when the player is moving upward (the y velocity is decreasing)

during their first jump (to prevent the player from spamming jump to float or fly).

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch7
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch7
https://packt.link/goVK2
https://pixelfrog-assets.itch.io/pixel-adventure-1
https://pixelfrog-assets.itch.io/pixel-adventure-2

Chapter 7 159

•	 The double-jump animation occurs when the player is already airborne, jumps again, and

is not wall-sliding.

•	 The wall-slide animation triggers when the player is sliding down a wall and pressing

toward the wall. The sprite will flip to face away from the wall they are sliding on.

In the previous chapter, we imported and named all the animations, and we now have a clear

understanding of the conditions under which each animation should be triggered. However, to

implement these animations effectively, there are some missing pieces:

•	 We have no way of knowing whether the player is currently wall-sliding

•	 We have no way of knowing whether this is the player’s first jump

•	 We have no way of knowing whether this is a double jump

These checks are crucial because our animations need to accurately represent the player’s actions

and state. For instance, triggering the wall-slide animation requires us to detect when the play-

er is sliding against a wall. Similarly, distinguishing between the first jump and a double jump

ensures that the correct animation plays for each action.

Helper variables
By addressing these gaps with helper variables, we can create a more dynamic and responsive

player character, where the animations align seamlessly with the gameplay mechanics estab-

lished in the previous chapter.

To ensure our character animations reflect the player’s actions, we need to track certain states,

such as whether the player is wall-sliding or how many jumps they’ve performed. To do this,

we’ll introduce two new variables.

Add the following variables at the top of your Player script, just after the constants:

var jump_count = 0

var is_wall_sliding = false

These variables will help us manage and detect the conditions needed to trigger the correct

animations.

The preceding variables will solve our problems; we just need to use them in the correct place.

Starting with the jump_count variable. When the player jumps or double jumps, we increase

jump_count by 1. When the player is on the floor again, we reset jump_count to 0.

Creating a 2D Mini-Game in Godot – Part 2160

In the handle_jump() function, increment jump_count as follows:

func handle_jump():

 # Reset jump count if the player is on the floor

 if is_on_floor():

 jump_count = 0

 # Jump from the floor (first jump)

 if Input.is_action_just_pressed("ui_accept") and is_on_floor():

 velocity.y = JUMP_VELOCITY

 jump_count += 1

 # Double jump in the air

 elif Input.is_action_just_pressed("ui_accept") and jump_count < 2:

 velocity.y = JUMP_VELOCITY

 jump_count += 1

In the preceding code, when the player jumps, jump_count is increased by 1, and when the player

lands on the floor, jump_count resets to 0.

Now that we’ve added the necessary variables to track the player’s state, we can start implement-

ing mechanics that use them in the next section.

Wall-sliding and double-jumping mechanics
In this section, we will create dedicated functions to handle wall-sliding and double-jumping, en-

suring smooth and responsive movement for the player. These mechanics will not only enhance

gameplay but also tie directly into triggering the appropriate animations. We will also create an

animate function that calls all the specific animations.

Wall-sliding and double-jumping are unique player movements that require additional logic to

function correctly. By separating these actions into their own functions, we can keep the code

organized and easier to maintain while ensuring that each mechanic behaves as intended. Let’s

start by creating these dedicated functions.

Double-jump function
The double jump is a classic mechanic in platformer games, giving players an extra boost and

greater control over their movement. To implement this feature, we need to track when the player

is in the air and determine whether a second jump is allowed.

Chapter 7 161

This section will walk you through creating a function to handle the double-jump logic, ensuring

a smooth and responsive experience for the player.

Let’s look at the following code:

func double_jump():

 # Handle double jump

 if Input.is_action_just_pressed("ui_accept") and !is_on_floor() and
jump_count < 2:

 velocity.y = JUMP_VELOCITY

 jump_count += 1

In the preceding double-jump function, first, check whether the player has pressed the jump key

and whether they are currently in the air (not on the floor) and the jump count is less than 2 (to

prevent flying). If all these conditions are true, then the player can jump a second time.

Wall-slide function
Wall-sliding depends on another value to work: friction. This is so that we can slide down the

wall at a slower rate than if we fall. To see that in action, add a new constant at the top of the

program as follows:

const SPEED = 150.0

const JUMP_VELOCITY = -400.0

const FRICTION = 100

The preceding constant called friction will be the speed at which we slide down the wall. The

value of 100 is chosen because it delivers the best effect; however, you could choose any number

you feel looks best to you when testing.

Now, implement the wall_slide function:

func wall_slide(delta):

 if is_on_wall() and !is_on_floor():

 if Input.is_action_pressed("ui_left") or Input.is_action_
pressed("ui_right"):

 is_wall_sliding = true

 else:

 is_wall_sliding = false

 else:

 is_wall_sliding = false

Creating a 2D Mini-Game in Godot – Part 2162

 if is_wall_sliding:

 velocity.y = min(velocity.y, FRICTION)

The wall_slide function enables the wall-sliding mechanic for the player by checking specific

conditions and modifying their movement. To better understand how this function works, let’s

break it down step by step in the following sections.

Checking conditions
The first if condition checks whether the player is touching a wall (is_on_wall()) and is not

grounded (!is_on_floor()).

This verifies two things:

•	 Whether the player is touching a wall using the is_on_wall() function

•	 Whether the player is not grounded, as determined by the !is_on_floor() condition

Detecting input
Inside the wall detection block, the following line checks for player input:

if Input.is_action_pressed("ui_left") or Input.is_action_pressed("ui_
right")

This condition determines whether the player is pressing either the left (ui_left) or right (ui_

right) movement keys. This leads to two scenarios:

•	 If either key is pressed, the code sets is_wall_sliding = true, enabling the wall slide

•	 If no key is pressed, the variable is set to false, stopping the wall slide

Resetting the wall slide
The else block ensures that if the player is not on a wall or is standing on the floor, is_wall_

sliding is set to false. This prevents unintended sliding.

Limiting downward speed
The final check, if is_wall_sliding:, applies the line velocity.y = min(velocity.y,

FRICTION) inside its block.

Here, the min() function compares the current downward velocity (velocity.y) with the pre-

defined FRICTION value. If velocity.y is greater than FRICTION (meaning the player is falling too

fast), min() returns the smaller of the two—the FRICTION value. This effectively caps the falling

speed during a wall slide, ensuring the player descends at a controlled, slower rate.

Chapter 7 163

This results in a smoother and more manageable wall-sliding experience, preventing rapid, un-

controlled drops down the wall.

By combining these checks and actions, the wall_slide function ensures the player can seamlessly

transition into and out of a controlled wall slide based on their input and environment. This sets

the foundation for intuitive gameplay mechanics.

Remember to call our new functions in the process function so that we can use them:

func _physics_process(delta):

 apply_gravity(delta)

 double_jump()

 wall_slide(delta)

 move_and_slide()

The _physics_process(delta) function is where all our custom movement and physics-related

functions are called. By calling them, we are asking Godot to run these functions as part of the

physics engine. _physics_process() is part of Godot’s game loop and runs at a fixed interval,

ensuring that the player’s actions and interactions with the game world are updated consistently

and in real time.

It’s important to use _physics_process() for physics-based logic because it’s synced with the

physics engine. If we used _process() instead—which runs every rendered frame and can vary

depending on frame rate—it could lead to jittery or inconsistent movement, especially on low-

er-performance machines. This is because _process() does not guarantee consistent timing,

which is crucial for physics calculations.

Animate function
The next step is to rewrite the animation trigger conditions in the code. Each animation trigger

is described with a comment.

The AnimatedSprite2D node will play the corresponding animation, but we need a reference to

the node to call its functions. We can get the reference as the scene is ready (loaded), and so we

give the variable the @onready annotation, as shown in the following code:

extends CharacterBody2D

@onready var animations = $AnimatedSprite2D

Creating a 2D Mini-Game in Godot – Part 2164

Next, we’ll declare a new function and call it animate:

#Handle Animations

func animate():

 # Stationary player

 if velocity.x == 0 and velocity.y == 0:

 animations.play("idle")

 # Player moving horizontally (left or right)

 elif velocity.y == 0:

 animations.play("run")

 # Player is falling

 elif velocity.y > 0 and !is_wall_sliding:

 animations.play("fall")

 # Player is jumping (first jump)

 elif velocity.y < 0 and jumpCount == 0:

 animations.play("jump")

 # Player is double-jumping

 elif !is_on_floor() and jumpCount > 0 and !is_wall_sliding:

 animations.play("double_jump")

 # Player is sliding on wall

 elif is_wall_sliding:

 animations.play("wall_slide")

 # Flip the sprite based on movement direction

 animations.flip_h = velocity.x < 0

Chapter 7 165

Remember to call the animate() function in the _physics_process() function:

func _physics_process(delta):

 apply_gravity(delta)

 standard_player_movement()

 double_jump()

 wall_slide(delta)

 animate()

 move_and_slide()

In the preceding code, we have again made sure to call all our custom functions to run repeatedly

in the physics_process function.

Now, test the game and your player should animate! Our next step is to set up the pass-through

platforms so that the player can jump up through a platform from below and press down to fall

through the platform from above.

Falling through platforms
We created two different physics layers on the TileMap in Chapter 6 so that the player can jump

up and fall down through certain platforms. Because we made these tiles as one-way tiles, we can

jump through them from below, with no need for coding.

Now, we need to set up the code that will allow our player to fall through these platforms when

we are standing on them and pressing down. Our code should check whether the player is pressing

down and then simply turn off Collision Mask number 3 (the pass-through layer). This means that

the player will stop detecting collisions on the pass_through layer and will fall until it reaches

a layer that it is detecting collisions for, which is the ground layer. This is demonstrated in the

check_pass_through() function as shown here:

func check_pass_through():

 if Input.is_action_pressed("ui_down"):

 set_collision_mask_value(3, false)

 else:

 set_collision_mask_value(3, true)

As can be seen in the preceding code, a new function has been created named check_pass_

through(). It then checks whether the user is pressing the down key and, if so, it sets the value

of Collision Mask layer number 3 to false (disabled). If the player is not pressing the down key,

the value will be reset to true (enabled).

Creating a 2D Mini-Game in Godot – Part 2166

Remember to add check_pass_through() to your list of function calls in the _physics_process();

otherwise, the function will not run!

func _physics_process(delta):

 apply_gravity(delta)

 standard_player_movement()

 double_jump()

 wall_slide(delta)

 animate()

 check_pass_through()

 move_and_slide()

The player can now run, jump, double-jump, and wall-slide around the level as well as fall through

special platforms. Our next step is to scatter some items around the level for the player to collect.

Adding collectible items
In many games, collectible items play a vital role in enhancing gameplay by providing rewards,

power-ups, or essential resources to the player. These items can create a sense of progression,

encourage exploration, and add layers of strategy to the game. In this section, we’ll explore how

to create a collectible item system in Godot.

You’ll learn how to design a collectible item, detect when the player interacts with it, and imple-

ment logic to grant rewards or effects. By the end of this section, you’ll have a reusable system

that can be extended to include a variety of collectibles for your levels.

For the collectible item, we will use the Strawberry found in the Items | Fruits folder. However,

you may use any item you wish as long as you adapt some of the steps that follow.

Strawberry scene (our collectible item)
For our game, the player will collect Strawberries. Once the player has collected all of the Straw-

berries on a level, a flag will appear which the player will touch to complete the level.

Follow these steps to create the collectible item scene:

1.	 Create a new scene and add Area2D as the root node. Area2D is an invisible node that

defines a region of 2D space, which detects when objects have collided or stopped col-

liding with it.

2.	 Add an AnimatedSprite2D node as a child node.

Chapter 7 167

3.	 Recall that to animate a sprite, we use multiple frames that depict the sprite at various

stages of motion. These frames are often grouped together in a single image known as a

sprite sheet.

4.	 To animate the sprite, we first import the sprite sheet and then divide it into individual

frames. To do this, select the AnimatedSprite2D node, and in the Sprite Frames property

in Inspector, click on New SpriteFrames. This is shown in Figure 7.1:

Figure 7.1 – Creating new SpriteFrames

5.	 Clicking on New SpriteFrames in Inspector, as shown in Figure 7.1, will open the

SpriteFrames area at the bottom of the screen. This is the space where we can import

frames and create and name new animations. This is shown in Figure 7.2:

Figure 7.2 – The SpriteFrames area

As shown in Figure 7.2, we currently have only the default animation and no images or

frames associated with it. We will now create animations for the idle animation and

then import the sprites associated with it from the sprite sheet.

6.	 Start by renaming the default animation to idle.

7.	 In FileSystem, create a new folder called Collectibles.

8.	 Now, find the Items | Fruits folder in the assets you downloaded from Pixel Frog (see

the Technical requirements section) and drag the images for your Strawberry into the Col-

lectibles folder in FileSystem.

9.	 Select the idle animation and then click on Add frames from a Sprite Sheet button or

press Ctrl + Shift + O. Now, select the Idle image file in your Collectibles folder.

10.	 Now, you must count the player images and update the Horizontal and Vertical frame

properties (see Figure 7.3) as required.

Creating a 2D Mini-Game in Godot – Part 2168

11.	 Then, click on the Select All button followed by the Add x Frame(s) button. This is shown

for the idle frames of the Strawberry in Figure 7.3:

Figure 7.3 – Setting the Horizontal and Vertical frames and adding them to the
animation

Now that you have cut the individual frames from the image (sprite sheet) as in Figure 7.3,

your SpriteFrames window will update with the images to be used for the idle animation.

This is shown in Figure 7.4:

Figure 7.4 – The frames used for the idle animation

Chapter 7 169

12.	 As you can see in Figure 7.4, there are controls for the animations in the bar at the top. I

have set the idle frame rate to 20 FPS, and looping is on. You can play with these settings

to find the ones you like. You can see this in Figure 7.5:

Figure 7.5 – Animation controls with looping and FPS highlighted

13.	 To complete the setup of the Strawberry collectible, we need to add a CollisionShape2D

node as a child of the Area2D node. For the Shape property of the node, select

CapsuleShape2D and adjust it in the Viewport to fit the Strawberry. This is shown in

Figure 7.6:

Figure 7.6 – Adjusting the collision to fit the Strawberry

Quick tip: Need to see a high-resolution version of this image? Open

this book in the next-gen Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are

included with your purchase. Scan the QR code OR visit packtpub.com/

unlock, then use the search bar to find this book by name. Double-check

the edition shown to make sure you get the right one.

packtpub.com/unlock
packtpub.com/unlock

Creating a 2D Mini-Game in Godot – Part 2170

The Strawberry can now collide with objects and detect when an object has collided with it. We

will need to write code to animate the Strawberry and to do something when the player collides

with it, such as removing the Strawberry and adding 1 to the player’s Strawberry collection score.

Implementing the Strawberry script
The Strawberry only needs to do two things: animate and disappear when the player collects it.

We will now program the Strawberry to do these two things.

In the Strawberry scene, select your Strawberry node and click on the Attach New Script button/

icon, as shown in Figure 7.7:

Figure 7.7 – The Attach New Script button/icon

The idle animation must play repeatedly; we have already set it to loop, so, in the ready function,

we just need to start the animation. To make it easier to reference other nodes in a scene, Godot

provides a built-in shortcut. By preceding a node’s name with a dollar sign ($), we can quickly

access that node and its functions directly.

This shortcut is particularly useful when frequently interacting with other nodes in a scene, such

as controlling a character’s animations or updating UI elements, as it keeps the code more read-

able and efficient. Use this shortcut to play the idle animation of the Strawberry, as shown in

the following code:

func _ready():

 $AnimatedSprite2D.play("idle")

When our player collides with or overlaps a Strawberry, we want to signal the Strawberry to ex-

ecute a function. In the function, we can remove the Strawberry from the level and add 1 to the

number of Strawberries collected by the player. Area2D nodes can respond to a variety of built-in

signals, one of which is when a body enters the area of the node.

To set this up, select the Strawberry node, then click on the Node tab (to the right of the Inspector

tab). In the Signals category, under Area2D, select the body_entered signal and click on Connect

in the bottom-right corner, or simply double-click the signal name. This is shown in Figure 7.8:

Chapter 7 171

Figure 7.8 – The body_entered signal of Area2D

A new window will pop up, which is shown in Figure 7.9. You need not worry about the details

now and simply click on the Connect button.

Figure 7.9 – Connecting a signal to a method (function)

Creating a 2D Mini-Game in Godot – Part 2172

Clicking on the Connect button, as shown in Figure 7.9, will create a new function in the Strawberry

script called _on_body_entered(body). The parameter called body contains a reference to the ob-

ject that collided with the Strawberry. To determine whether that body is the player, we can tag

the player as part of a group called Player.

Here’s how you do it:

1.	 Switch to your Player scene and select the Player node.

2.	 Again, click on the Node tab to the right of Inspector, then choose the Groups sub-tab.

3.	 Click on the + symbol to add a group.

4.	 Name the group Player.

These steps are shown in Figure 7.10.

Figure 7.10 – The Node tab, Groups sub-tab, and the + symbol to add a new group

With the group ready, we can check whether the body that entered the Strawberry is in the Player

group and if so, react accordingly. We can do this in the Strawberry script as shown:

func _on_body_entered(body):

 if body.is_in_group("Player"):

 #add to player score

 #remove the strawberry

Chapter 7 173

Player will keep track of how many Strawberries it has collected. We need a variable in the Player

script to keep count of the number of Strawberries the player has collected, and we need a function

in the Player script to add one to the score each time a Strawberry is collected.

Return to the Player script and add the variable and function as shown in the code:

var jumpCount = 0

var is_wall_sliding = false

var strawberry_count = 0

func add_score(amount):

 strawberry_count += amount

The preceding code will increase the strawberry_count variable by an amount each time it is

called. We will call it in the _on_body_entered(body) function of the Strawberry and remove the

Strawberry from the scene once collected, as shown here:

func _on_body_entered(body):

 if body.is_in_group("Player"):

 body.add_score(1)

 queue_free() #remove strawberry

The built-in queue_free() function deletes a node from memory at the end of the current frame

as soon as it is safe to do so. It is the recommended method for removing nodes from the scene.

With this code in place, when the Strawberry signals that another body has entered its space, a

value of 1 will be added to the Strawberry count of the player, and the Strawberry will be removed

from the scene.

Creating a 2D Mini-Game in Godot – Part 2174

Feel free to drag and drop the strawberry.tscn file into your level multiple times so that the

player has something to collect, as shown in Figure 7.11:

Figure 7.11 – Dragging and dropping Strawberries into the level

Chapter 7 175

The player can move through the level and collect Strawberries. To add a challenge, we need an

enemy to patrol.

Adding a patrolling enemy
This is a reminder that the enemies can be found here: https://pixelfrog-assets.itch.io/

pixel-adventure-2.

We will be using the Mushroom enemy. Create a new scene and set it up with CharacterBody2D,

AnimatedSprite2D, and CollisionShape2D with CapsuleShape2D only covering part of the mush-

room, as shown in Figure 7.12:

Figure 7.12 – Setting up the Mushroom scene

https://pixelfrog-assets.itch.io/pixel-adventure-2
https://pixelfrog-assets.itch.io/pixel-adventure-2

Creating a 2D Mini-Game in Godot – Part 2176

Use the sprite sheets provided in the Mushroom enemy folder and set up the SpriteFrames and

animations for idle and run to be looped at 20 FPS. I created my own death animation using one

frame from idle and rotating it, as shown in Figure 7.13:

Figure 7.13 – Animations for the Mushroom enemy

Attach a new script to the Mushroom node and ensure that the template used is an empty object,

as shown in Figure 7.14:

Figure 7.14 – Using the Object: Empty template for the Mushroom enemy

Chapter 7 177

Using the Empty template will ensure that our script is created with no default or added code

and is as simple as possible.

Add code to set values for the speed, direction, and health of the Mushroom, as shown in the code:

extends CharacterBody2D

const SPEED = 75

var direction = 1

var health = 1

Note that the direction variable will have values of -1 or 1 to indicate left or right movement,

respectively.

Now, we have variables to control the speed, direction, and health of the Mushroom enemy.

Also, add a function to apply gravity to the Mushroom, allowing it to fall and touch the ground,

as shown in the following code:

func add_gravity(delta):

 # Add gravity.

 if not is_on_floor():

 velocity += get_gravity() * delta

If the Mushroom is not on the ground, gravity will pull it downward.

Now, create a function to make the Mushroom move. I have called mine update_direction()

and all it does is make the enemy move to the right at a constant speed, as shown in the code:

func update_direction():

 # Move enemy at constant speed

 velocity.x = SPEED * direction

The velocity of the Mushroom in the horizontal plane is multiplied by speed and direction.

Both functions must also be called in the _physics_process(delta) function along with move_

and_slide(), as shown in the code:

func _physics_process(delta):

 add_gravity(delta)

 update_direction()

 move_and_slide()

Creating a 2D Mini-Game in Godot – Part 2178

We must also set collisions on the Mushroom so that it can collide with the floor and the player.

Do this by turning on Collision Layer 1 and turning on Collision Mask 1, 2, and 3.

If you drop a Mushroom into the level now and run the game, the Mushroom will begin moving

to the right until it collides with a wall.

We will detect when a Mushroom has collided with a wall using the built-in is_on_wall() func-

tion and reverse its direction, as shown in the code:

func reverse_direction():

 #Reverse direction when hitting a wall

 if is_on_wall():

 direction = -direction

Note that by inverting or negating the value of direction, we can determine whether the Mush-

room moves to the left or the right.

Make sure to call reverse_direction() after you have called move_and_slide(), as shown in

the following code, because otherwise, collisions will not be detected correctly:

func _physics_process(delta):

 add_gravity(delta)

 moveEnemy()

 move_and_slide()

 reverse_direction()

If you place your Mushroom on a floating platform, when it reaches the edge of the platform, it

will fall off. To prevent this, use a RayCast2D node to detect when the Mushroom is near the edge

and then reverse direction. Add a RayCast2D node as a child of Mushroom, as shown in Figure 7.15:

Figure 7.15 – Adding a RayCast node to our Mushroom node

Chapter 7 179

RayCast2D is simply an invisible ray cast by an object that looks for collisions in the direction in

which it was sent. In this case, we are looking for collisions below us to determine when we are

no longer on the floor. Our ray is cast a little to the right of our Mushroom (I used Target Position

x: 0, y: 14 and Transform Position x: 15 and y: 7) so that we can see when we are approaching

the no floor zone and reverse the direction before we fall off! Place your ray as shown in Figure 7.16:

Figure 7.16 – Casting a ray downward from the right of the Mushroom

Now, we can write a function to reverse the direction of the Mushroom when the ray is not col-

liding with the floor and to move the ray to the opposite side so that it is always looking for no

floor in the direction the Mushroom is moving, as shown:

func platform_edge():

 if not $RayCast2D.is_colliding():

 direction = -direction

 $RayCast2D.position.x *= -1

In the preceding code, as soon as the ray is no longer colliding with the ground, the Mushroom’s

movement direction is reversed and the ray is moved to the other side of the Mushroom to detect

collisions in the direction that the Mushroom is moving. We must all turn on Collision Mask 2

and 3 for the RayCast2D node so that it will detect the floor.

Remember to call this function after move_and_slide() in the _physics_process() function so

that it runs after collisions have been detected. Finally, place a Mushroom on a platform to test

that it patrols the platform and does not fall off.

Creating a 2D Mini-Game in Godot – Part 2180

Mushroom stomping
The player should be able to hurt the Mushroom only by attacking it from above. We will create a

hurt zone or death zone for the Mushroom, which will consist of an Area2D and CollisionShape2D

node with a RectangleShape2D node placed on top of the Mushroom.

The Mushroom will hurt the player if it attacks from the side. We will create a hurt player

zone on either side of the Mushroom, again made up of Area2D and CollisionShape2D

with RectangleShape2D. This is shown in Figure 7.17:

Figure 7.17 – Creating the death zone and hurt player zone

With these in place, we can make use of signals to detect when the player has entered one of the

zones and then react accordingly.

Connect the _on_death_zone_body_entered() and _on_hurt_player_zone_body_entered()

signals to the Mushroom script. Then, write code in the empty functions, as shown in the code:

func _on_death_zone_body_entered(body):

 if "Player" in body.name:

 body.velocity.y = -500

 health -= 1

Chapter 7 181

func _on_hurt_player_zone_body_entered(body: Node2D):

 if "Player" in body.name:

 body.hurt()

There is no hurt() function in the Player script yet. We should create that now.

Open the Player script and add the following function so that the player can be hurt by the

Mushroom enemies:

func hurt():

 print("Player hurt")

Take note that, for now, we just use a technique called stub testing in which we simply display

a message to verify that the function was called correctly. Later, we will complete the full imple-

mentation of this function.

The _on_death_zone_body_entered(body) function runs whenever a body enters the death zone

area (jumps onto the Mushroom from above). We check to see whether the body that entered the

zone has the word Player in its name. This is an alternative and equivalent option to checking

whether body.is_in_group("Player"). If the body does have the word Player in its name, we

add 500 to the velocity of the player to make it appear to bounce off the Mushroom and we sub-

tract 1 from the health of the Mushroom.

The _on_hurt_player_zone_body_entered() function runs when a body enters the Mushroom

from the sides. Again, if this body is the player, we run the player’s hurt() function, reducing

the player’s health.

When the Mushroom’s health is 0, it should disable collisions, stop detecting collisions with the

player, and play the death animation. This is achieved with the custom function shown as follows:

func mushroom_death():

 if health <= 0:

 $CollisionShape2D.disabled = true

 $HurtPlayerZone.monitoring = false

 $AnimatedSprite2D.play("death")

Creating a 2D Mini-Game in Godot – Part 2182

The mushroom_death() function should be called in the _physics_process() function, as shown

in the code:

func _physics_process(delta):

 add_gravity(delta)

 moveEnemy()

 move_and_slide()

 reverse_direction()

 platform_edge()

 mushroom_death()

Connect the _on_animated_sprite_2d_animation_finished() signal of the AnimatedSprite2D

node of the Mushroom. When the death animation is finished, it will trigger the function to

remove the Mushroom from the scene, as shown in the code:

func _on_animated_sprite_2d_animation_finished():

 if $AnimatedSprite2D.animation == "death":

 queue_free()

Add some more Mushrooms and collectibles to your level. To prevent crowding the scene tree,

add a new child node of the Node type. Rename it Enemies and drag all of the Mushrooms under

it. You can do the same for Collectibles, as shown in Figure 7.18:

Figure 7.18 – Organizing the scene tree by grouping nodes

Chapter 7 183

Now that the level has enemies and collectibles, we need a win condition. For our purposes, it will

be that once the player has collected all of the Strawberries, a checkpoint flag will fly. Touching

that flag will end the level. Let’s learn more about level completion in the next section.

Implementing level completion
Level completion mechanics are a vital part of any game, providing players with a sense of accom-

plishment and closure. In this section, we’ll create a system in which collecting all the Strawberries

triggers a sequence of events: a checkpoint flag animates and flies out, signaling the completion

of objectives. The player then moves to the flag, touching it to end the level.

This system not only adds visual and interactive flair but also reinforces the player’s progress and

goal achievement. By the end of this section, you’ll have a polished and rewarding level completion

sequence to enhance your game’s overall experience.

Create a new scene with the following:

•	 Area2D as the root node (renamed to CheckPoint)

•	 AnimatedSprite2D

•	 CollisionShape2D with RectangleShape2D

The scene tree is shown in Figure 7.19:

Figure 7.19 – Scene tree for the checkpoint scene

Create three animations for the flag, named flag_fly, idle, and trigger. In the assets folder

from Pixel Frog, navigate to the Items | Checkpoints | Checkpoint folder.

•	 For the idle animation, use the single frame called Checkpoint (No Flag).png.

•	 For the trigger animation, use the Checkpoint (Flag Out).png sprite sheet. Do not

loop the animation and run it at 20 FPS.

•	 For the flag_fly animation, use the Checkpoint (Flag Idle).png sprite sheet. Loop

the animation and run it at 20 FPS.

Creating a 2D Mini-Game in Godot – Part 2184

An image of the flag_fly animation is shown as an example in Figure 7.20:

Figure 7.20 – Setting up the flag animations for the checkpoint

Attach a script to the CheckPoint node to customize its behavior. We will create our own signal

to trigger the flag to fly out. Once the player has collected all of the Strawberries in the level, the

player will emit the trigger signal. The CheckPoint code is shown and explained as follows:

extends Area2D

signal trigger

var level_complete = false

signal that runs when the animation is finished playing

func _on_animated_sprite_2d_animation_finished():

 $AnimatedSprite2D.play("flag_fly")

 level_complete = true

our own custom signal

func _on_trigger():

 $AnimatedSprite2D.play("trigger")

A signal that runs when a body enters

func _on_body_entered(body):

 if level_complete:

 get_tree().quit()

Chapter 7 185

As shown, we create our own signal and call it trigger. Then, in Inspector, we connect that

signal to our script. We also have a Boolean variable called level_complete to determine when

the level is complete. The trigger function linked to our signal plays the trigger animation and

then signals that the animation is complete, which switches to the flag_fly animation and sets

level_complete to true. For now, when the player touches the flag, the game will exit.

However, we need to emit the trigger signal from the Player script once they have collected all

the Strawberries. Return to the Player script and add a new variable called level_strawberries

to keep track of the number of Strawberries in the level, as shown:

var strawberry_count = 0

var level_strawberries

First, we should create a group called checkpoint and add the CheckPoint node to that group.

To do this, select the CheckPoint node in Inspector, select the Node tab, then choose the Groups

sub-tab and add a new group called checkpoint. This is shown in Figure 7.21:

Figure 7.21 – Creating the checkpoint group

We also need a custom function that will check to see whether the level is complete and then emit

the trigger signal. If strawberry_count (which is the number of Strawberries that the player

has collected) matches level_strawberries (which is the total number of Strawberries in the

level), then we get a reference to the checkpoint via its group name and emit the checkpoint’s

trigger signal. Finally, we reset the Strawberries to 0 so that the signal is only emitted once and

not constantly. This is shown in the code as follows:

func complete_level():

 if strawberry_count == level_strawberries:

 var checkpoint =

 get_tree().get_first_node_in_group("checkpoint")

 checkpoint.emit_signal("trigger")

 strawberry_count = 0

Creating a 2D Mini-Game in Godot – Part 2186

Remember to call the new complete_level() function in the _physics_process(delta) function.

Since all the Strawberries are in the Level1 scene, we need to attach a script to the Level1 node so

that it can count the Strawberries in the scene and update the Player variables. This is shown

in Figure 7.22:

Figure 7.22 – Attaching a script to the level node

Counting the Strawberries in the level script is shown in the code as follows:

extends Node2D

@onready var player = $Player

@onready var strawberries = $Collectibles

func _ready() -> void:

 player.level_strawberries =

 strawberries.get_child_count()

In the preceding code, we get a reference to the Player scene as well as the Collectibles group of

scenes (multiple Strawberries.) In the _ready function, we update the player’s level_strawberries

variable by setting it to the count of all the Strawberries in the level.

Now, add a CheckPoint scene to the level, and you have a way to complete it.

With that, the level is now playable!

Summary
In this chapter, we expanded our 2D platformer with essential gameplay mechanics and refined

player interactions. We controlled player animations through code, ensuring smooth visual feed-

back for actions such as running, jumping, and wall-sliding. We also implemented wall-sliding

and double-jumping, adding versatility to player movement, and introduced falling-through

platforms for dynamic level navigation. Alongside these, we added collectible items to encour-

age exploration, a patrolling enemy to introduce a challenge, and a checkpoint for tracking level

completion.

Chapter 7 187

In the next chapter, we will transfer our 2D skills and make a 3D platformer!

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Part 3
Building and Beyond –

Your Game Development
Journey

In this final part of the book, you’ll take your skills to the next level by building a 3D mini-game

from scratch across two detailed chapters. You’ll then explore how to polish your game with visual

and audio enhancements—often called “game juice”—to elevate the player experience. We’ll

also step back to examine core game design principles, helping you think critically about what

makes games engaging and enjoyable. Finally, we’ll wrap up with a carefully curated selection of

resources to support your continued learning and growth as a game developer. By the end of this

part, you’ll be well-equipped to start creating your own complete games and refining your craft.

This part of the book includes the following chapters:

•	 Chapter 8, Creating a 3D Mini-Game in Godot – Part 1

•	 Chapter 9, Creating a 3D Mini-Game in Godot – Part 2

•	 Chapter 10, Adding Game Juice

•	 Chapter 11, Understanding Game Design

•	 Chapter 12, Where to Next?

8
Creating a 3D Mini-Game
in Godot – Part 1

Creating a well-structured 3D game world requires understanding how to compose scenes, de-

sign levels, and implement functional controllers. In this chapter, we’ll jump into the essential

building blocks of 3D game creation in Godot. By learning how to compose and organize scenes,

you’ll develop a solid foundation for creating dynamic, interactive environments.

You’ll start by building a 3D character scene and attaching a script to control its movement. Next,

you’ll learn how to design levels by combining static objects, collisions, and meshes. We’ll also

implement a camera controller that provides a smooth and responsive player view. Finally, we’ll

integrate everything into a complete level and test it to ensure functionality.

In this chapter, we’re going to cover the following main topics:

•	 Working in 3D: a new dimension in Godot

•	 Building a 3D character

•	 Creating a level design

•	 Working with a Character Controller script

•	 Using variables

•	 Exploring functions

•	 Implementing a camera controller

•	 Running tests

Creating a 3D Mini-Game in Godot – Part 1192

By the end of this chapter, you’ll be able to create reusable 3D scenes, control your player charac-

ter, and design levels that are both visually appealing and functional. These skills are critical for

building immersive 3D games and will set the stage for more advanced features in future chapters.

Technical requirements
This chapter’s code files are available here in the book’s GitHub repository: https://github.com/

PacktPublishing/Godot-4-for-Beginners/tree/main/ch8

The game assets used in this project are released under a Creative Commons Zero (CC0) license

by Essssam. Essssam has allowed us to distribute, remix, adapt, and build upon the material in

any medium or format, even for commercial purposes.

They can be found here:

https://essssam.itch.io/3d-leap-land

Visit this link to check out the video of the code being run: https://packt.link/6dr7h

Working in 3D: a new dimension in Godot
Until now, we’ve been working exclusively in 2D – learning the fundamentals of Godot through

flat scenes, sprites, and screen-space movement. In this chapter, we’re stepping into 3D, where

we’ll be working with depth, perspective, lighting, and physics in a more complex environment.

While the transition from 2D to 3D can seem daunting at first, Godot’s consistent node and scene-

based design makes the leap much more manageable. The same principles of modularity and

hierarchy still apply – only now we’re dealing with 3D nodes such as Node3D, MeshInstance3D,

and Camera3D, and building scenes in a three-dimensional space.

This chapter will walk you through the process of creating a basic 3D character. You’ll learn how

to assemble and organize the necessary components into a standalone scene, which can later be

reused and integrated into a larger 3D world – just like we did in 2D.

Building a 3D character
Just because we are now working in three dimensions does not mean that the node and scene design

philosophy of Godot has changed. We will continue to design different components of the game

in their own scenes and then build a level or master scene using them.

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch8
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch8
https://essssam.itch.io/3d-leap-land
https://packt.link/6dr7h

Chapter 8 193

We shall start with the Player scene. By following these steps, you’ll create a fully functional 3D

player character – one that can move around your 3D world using keyboard input and respond

realistically to physics. This will lay the foundation for building a complete 3D game, starting

with one of its most essential elements: the player.

1.	 Create a new Godot project and call it Leap Land.

2.	 Now, click on Other Node and add a CharacterBody3D node as the root, as shown in

Figure 8.1:

Figure 8.1 – Starting a new 3D scene

3.	 Rename the CharacterBody3D node to Player. This node is designed as a physics body,

which is meant to be user-controlled.

 Important note

Note that you can fly around inside the 3D scene by holding down the right mouse
button and using the WASD keys as in most games. If you use mouse scroll while

holding the right mouse button down, you can set the movement speed.

Creating a 3D Mini-Game in Godot – Part 1194

4.	 Create a new folder in FileSystem and name it assets. Drag and drop the obj and tex

folders from the 3D Leap Land asset pack into this folder. This is shown in Figure 8.2:

Figure 8.2 – Importing the obj and tex folders from 3D Leap Land

5.	 In 2D, we needed to attach a sprite to the CharacterBody2D node in order to display its

texture. In 3D, we add a MeshInstance3D node as a child of CharacterBody3D node, as

shown in Figure 8.3:

Figure 8.3 – Adding MeshInstance3D as a child

6.	 Select MeshInstance3D node and, in Inspector, find the Mesh property. It is currently

<empty> but drag and drop slime.obj from FileSystem onto the Mesh property as shown

in Figure 8.4:

Figure 8.4 – Setting slime.obj as Mesh

Chapter 8 195

7.	 The slime in the scene is gray. To correct this, we must drag the texture file, palette.png,

from the tex folder onto the slime in the Viewport. The slime will be textured as shown

in Figure 8.5:

Figure 8.5 – Adding the texture to the slime

8.	 Now, give the player a hitbox by adding a CollisionShape3D node as a child. Then, in

Inspector, find the Shape property, and select a new SphereShape3D. Use the orange

handles to resize the hitbox to fit the slime. My Position values for the CollisionShape3D

node were x: 0.0, y: 0.15, z: 0.0, but yours may vary.

9.	 To see anything, we need a camera in the scene. Add a Camera3D node as a child and

move it so that it is in a position to see the entire slime. I placed mine at x: 0, y: 1, z: -2.5

and set the rotation to x: -15, y: -175, z: -1. This is shown in Figure 8.6:

Figure 8.6 – Positioning the camera in the scene

Creating a 3D Mini-Game in Godot – Part 1196

10.	 Without light, we still won’t see much. Add a DirectionalLight3D node as a child of the

CharacterBody3D root node. This is light that goes out in all directions infinitely, like the

sun. You can angle the light onto the player.

11.	 In the Transform property of MeshInstance3D node, rotate the mesh by 180 degrees

around the y-axis.

12.	 Save the scene as player.tscn and preview it by pressing F6. It should look like Figure 8.7:

Figure 8.7 – The view of the slime in the game

The Player scene is now mostly complete and ready to be imported into more complex scenes,

such as the level scene, and this is what we will work on next.

Creating a level design
Now that we’ve created our 3D player character, the next step is to build a level for them to exist

and move around in.

Level design in Godot means creating the environment – the floors, walls, platforms, and scen-

ery – that form the playable world of your game. In 3D, this involves placing and arranging 3D

objects in space to define where the player can go, what they can interact with, and how the

gameplay will unfold.

In this section, we’ll create a basic 3D level using Godot’s built-in nodes and tools. By the end,

you’ll have a space for your character to walk around and test movement.

Chapter 8 197

Creating a level component
To build a level, we use various level components. These are the individual parts that make up

the environment, such as floors, walls, ramps, or platforms. Level components are often made

up of StaticBody3D, MeshInstance3D, and CollisionShape3D nodes.

Most parts of the level, such as the ground, walls, fences, bridges, and other non-moving structures,

are created using the StaticBody3D node. These objects are not meant to move during gameplay

and are unaffected by physics forces or collisions. Instead, they provide a stable and optimized

foundation for the game’s environment.

Using StaticBody3D node for stationary elements is important for several reasons:

•	 Performance: Godot optimizes StaticBody3D nodes by excluding them from costly physics

calculations involving movement and collision resolution. This significantly reduces CPU

usage, especially in complex scenes.

•	 Physics stability: Because these bodies are fixed in place, they provide reliable collision

surfaces for moving objects such as players or enemies, ensuring consistent interactions.

•	 Lighting and baking: Static bodies also work well with light baking and global illumi-

nation systems. Since they don’t move, lightmaps and shadows can be precomputed

accurately, improving visual quality without runtime performance cost.

Although StaticBody3D nodes don’t respond to physical forces, they can still be repositioned

manually via code or animations, such as raising a drawbridge or lowering a platform when

triggered. This gives you flexibility without sacrificing efficiency.

To visualize these components in 3D space, we use MeshInstance3D node, which displays the

visible shape of an object. To make these objects interactable in the game world, such as allowing

the player to walk on them or bump into them, we pair them with a CollisionShape3D node. Let’s

look at an example of creating a level component in the next section.

Example: creating a grass platform
The process of creating a level component is shown in the following steps and needs to be re-

peated for each component:

1.	 Create a new scene with StaticBody3D node as the root. Rename it Grass. Save it as

grass.tscn.

2.	 Add a MeshInstance3D node and set the Mesh property to ground_grass_4.obj.

3.	 Drag palette.png onto the mesh to set the texture.

Creating a 3D Mini-Game in Godot – Part 1198

4.	 Add a CollisionShape3D node and select New BoxShape3D.

5.	 Use the handles to fit the hitbox around the ground model.

The scene should look as shown in Figure 8.8:

Figure 8.8 – The ground scene

Important note

Note that this process will need to be repeated for each component (piece of a level)

you want to add to the level. This is annotated in Figure 8.9.

Chapter 8 199

Figure 8.9 – Arrows pointing to different level components (all individual scenes)

In the next section, we’ll learn how to work with irregular collision shapes.

Handling irregular collision shapes
Some models do not conform to regular collision shapes such as boxes or spheres – for example,

a curved or uneven structure, such as a bridge. Fortunately, Godot provides tools to help generate

collision shapes for these more complex models automatically.

To see how this works in practice, we’ll set up a Bridge scene using an irregular mesh and let

Godot generate the collision structure for it:

1.	 Create a new scene with StaticBody3D as the root. Rename it to Bridge and save the

scene as bridge.tscn.

2.	 Add a MeshInstance3D node and set the Mesh property to bridge_1.obj.

3.	 Drag palette.png onto the mesh to set the texture.

4.	 Select the MeshInstance3D node (the Bridge model).

Creating a 3D Mini-Game in Godot – Part 1200

5.	 Click on the Mesh menu at the top of the screen and click on Create Collision Shape… as

shown in Figure 8.10:

Figure 8.10 – Autogenerating a collision shape for the Bridge scene

After clicking on Create Collision Shape…, a pop-up menu appears. For Collision Shape

placement, choose Sibling, and for Collision Shape Type, choose Trimesh. This is shown

in Figure 8.11:

Figure 8.11 – Options for Godot to create the collision shape

•	 Choosing Sibling ensures that the generated collision shape is added as a separate

node alongside the mesh, rather than as a child of it. This keeps the scene hierarchy

clean and makes it easier to manage the mesh and its collision shape independently.

•	 Selecting Trimesh as the collision type is ideal for static 3D models (such as level

geometry) that are not meant to move. A Trimesh collision creates a detailed

shape that matches the mesh surface, which allows for accurate collision detection.

However, it’s best used only for static objects, as it is computationally expensive

and not suitable for dynamic or moving objects.

Chapter 8 201

6.	 Godot will generate a collision shape polygon for Bridge, and the resulting scene tree is

shown in Figure 8.12:

Figure 8.12 – The scene tree for the Bridge scene

Creating the level layout
To begin creating the level, I started by exploring the models included in the asset pack. These

models represent various environmental elements, such as terrain, structures, and props. I used

the same process we followed earlier when setting up the grass and bridge: importing the models

into Godot and turning each into its own scene.

By creating separate scenes for individual components, I was able to build a modular set of level

elements. These scenes were then combined to form the complete level layout. You can follow

the same approach—choose models from the downloaded asset pack (refer to the Technical re-

quirements section), create scenes for each component, and then assemble them in a new scene

to design your level.

Finally, make sure to add a DirectionalLight3D node to your level scene. This ensures the envi-

ronment is properly lit, and that models appear with realistic shading and depth.

Important note

There is a drawback to allowing Godot to generate the collision shape for objects,

and that is performance. Using simple or primitive shapes for collisions is preferable

as it reduces the physics calculations required by a scene.

Creating a 3D Mini-Game in Godot – Part 1202

The level I have created is shown in Figure 8.13:

Figure 8.13 – An example level

Next, we’ll learn more about organizing a level scene effectively.

Organizing the level scene
In Figure 8.13, each component in the level is a separate scene, making it easy to reuse and manage

them independently. Figure 8.14 shows the list of scene nodes I used to construct the level. Note

that I have grouped similar or repeated objects – such as Fences, Grass, Crates, and Rocks – into

their own parent nodes:

Chapter 8 203

Figure 8.14 – The individual scenes making up the level

Grouping is important because it keeps the scene tree organized, especially for larger levels. It

allows you to move or manipulate entire categories of objects together, which can save time and

reduce errors. For example, if you want to disable all fences or apply a shader to all grass, having

them grouped makes this much easier.

It’s also worth noting that most of these objects, such as the ground, fences, rocks, and bridges,

are static. They don’t move during gameplay and should be implemented using StaticBody3D

for better performance and accurate physics.

In contrast, dynamic objects such as the player are designed to move and react to the environment

and are therefore implemented using physics-enabled nodes such as CharacterBody3D.

This kind of structure not only helps with level design but also ensures smooth performance and

cleaner code management as your project grows.

As shown in Figure 8.14, we now have a complex Level 1 scene that is made up of many smaller

scenes. Although we have a player in the scene, there is no way to control it. In the next section,

we will work on the Character Controller script.

Working with a Character Controller script
In this section, we will write a script that allows players to move the character around the 3D

world. This script is essential because, without it, our character remains static – unable to walk,

run, or jump through the level. By the end of this section, you’ll have a fully controllable player

character that can respond to input and interact with the game environment in a meaningful way.

Creating a 3D Mini-Game in Godot – Part 1204

Let’s begin by adding a new script to the CharacterBody3D node of the Player scene. Make sure

that Template is unchecked for Empty so that we do not get any pre-made code and can make

a completely custom character controller as shown in Figure 8.15:

Figure 8.15 – Adding an empty script to the player

When the Template check box is not checked, as in Figure 8.15, we are presented with a script

that only has one line:

extends CharacterBody3D

This line means that this script is adding to or customizing the built-in CharacterBody3D node

in Godot. The CharacterBody3D node is used to create 3D characters, such as players or enemies,

which can move, jump, or interact with the environment. By extending it, we can write our own

code to make the character behave exactly how we want.

Although we added a camera to our Player scene, this won’t be the only camera used during

gameplay. Instead, we’ll set up a second static camera in the level that we can rotate to view the

player from different angles. In Godot, a scene can include multiple cameras, and you can choose

which one is active by marking it as Current in Inspector.

Using variables
Before we dive into the code, let’s take a moment to understand what it’s doing. In this script,

we’ll define a few important properties that control how our player character moves, such as

how fast they walk or how high they can jump. We’ll use exported variables, which means these

properties will not only be defined in code but will also be visible and editable directly in the

Godot editor’s Inspector panel.

Chapter 8 205

This makes development more flexible and efficient. Designers and artists, for example, can

fine-tune values such as movement speed, jump height, or gravity without needing to touch the

code at all. Meanwhile, programmers can keep the logic organized in the script. This separation

of concerns helps teams collaborate more effectively, allowing everyone to test and balance the

gameplay quickly without risking breaking anything in the code.

Linking the Player script with the camera
We can now start preparing the character to interact with other components in the game world.

One important element is the camera, which needs to follow the player smoothly as they move

through the level. To make this possible, we’ll set up a way for the Player script to communicate

with a separate scene that controls the camera.

Later, we will create a View scene that will act as the camera controller. We’ll give our camera

a target to follow (which will be the player). We will also add a reference to this View so that

we can control the camera’s behavior, such as rotation or zoom, directly from the Player script.

Begin by adding these two lines to the Player script:

@export_subgroup("Components")

@export var view: Node3D

Here, the @export annotation makes a variable visible in Inspector. In this case, it also organizes

the variable under a new category or subgroup called Components within the properties of the

CharacterBody3D node. The variable view will now appear in that subgroup, and it is designed

to reference a Node3D node, which we will create later to serve as the camera controller. This is

shown in Figure 8.16:

Figure 8.16 – Exporting a group called Components and a variable called View

Creating a 3D Mini-Game in Godot – Part 1206

As can be seen in Figure 8.16, adding the @export annotation makes a variable editable directly in

the Godot editor, allowing you to change its value without modifying the code. This is especially

useful for testing, as you can adjust values in real time while the game is running.

Next, export another group for the movement properties of the player with a variable for move-

ment speed and jump strength:

@export_subgroup("Properties")

@export var movement_speed = 250

@export var jump_strength = 7

Because these variables are available in Inspector, we can find the right feel for the movement of

our player by adjusting the values as we test the game.

Now let’s add some general-purpose variables for the player:

•	 movement_velocity: To store how the player moves through 3D space

•	 rotation_direction: To keep track of the direction the player is turning in

•	 gravity: To simulate the effect of gravity on the player

So, let’s add the following lines to the Player script:

var movement_velocity: Vector3

var rotation_direction: float

var vertical_velocity = 0

Let’s understand the important elements in this code snippet:

•	 movement_velocity stores the velocity vector based on player input for movement

•	 rotation_direction holds the angle the character should rotate toward based on move-

ment direction

•	 vertical_velocity keeps track of the vertical force acting on the character

In addition to movement, we need variables to manage the player’s jumping abilities and track

collectibles. Specifically, we’ll add variables to do the following:

•	 Detect when the player is on the ground

•	 Control single and double jumps

•	 Count how many Gems the player has collected

Chapter 8 207

Let’s define these variables in the script:

var previously_floored = false

var jump_single = true

var jump_double = true

var gems = 0

var smoothing_factor = 10

const GRAVITY = 25

In this code snippet, previously_floored tracks whether the character was on the ground during

the last frame and is useful for detecting landings. This will become clearer when it is used in

code further on.

Finally, we need a reference variable for the 3D mesh that visually represents the character. We’ll

use this reference to adjust the model’s scale during jumping and landing – an easy way to add

visual appeal known in animation as squash and stretch.

@onready var model = $MeshInstance3D

This line tells Godot to assign the MeshInstance3D node (a child of the current node) to the

variable model, but only after the scene is fully loaded and ready. The @onready keyword ensures

that the node exists when this reference is made.

Alternative method for adding reference variables
There is a shortcut for adding reference variables such as the preceding one used for the player

model. You drag the node that you want to reference into the script, and, as you are about to release

the mouse button, hold Ctrl on the keyboard. Godot will automatically type out the reference for

you, and you can rename it if you wish. This is shown in Figure 8.17:

Figure 8.17 – Drag the node into the script and hold down Ctrl as you release it

Creating a 3D Mini-Game in Godot – Part 1208

As our Player script grows, it’s important to keep things organized and readable. Instead of

writing all our logic in one long block, we’ll break it into smaller, focused functions. Functions

allow us to group related lines of code under a single name, making our scripts cleaner, easier to

understand, and easier to maintain.

In the next section, we’ll start defining functions to handle key parts of our character’s behavior.

Each function will focus on one specific task, helping us build a well-structured and reusable

character controller.

Exploring functions
As mentioned earlier, as our player becomes more interactive, the script that controls it will grow

in complexity. To keep our code clean and manageable, we’ll break it into functions: reusable

blocks of logic that each handle one specific task.

In this section, we’ll define functions to control gravity, handle movement input, manage jumping

behavior, and track Gem collection. Understanding how to organize code in this way is a key step

toward writing scalable and maintainable scripts in Godot.

Let’s start by creating a function to handle gravity:

func handle_gravity(delta):

 vertical_velocity += GRAVITY * delta

 if vertical_velocity > 0 and is_on_floor():

 jump_single = true

 vertical_velocity = 0

Let’s break this down:

•	 vertical_velocity += GRAVITY * delta: This gradually increases the gravity over time,

simulating the effect of falling

•	 if vertical_velocity > 0 and is_on_floor(): This checks if the player is falling

(vertical_velocity > 0) and has landed (is_on_floor() returns true)

•	 jump_single = true: Once the player lands, we allow them to jump again

•	 vertical_velocity = 0: Reset vertical velocity so that the player doesn’t continue ac-

celerating downward

This function ensures the player is affected by gravity and can only jump again once they’ve landed.

Chapter 8 209

Now, let’s create a function to handle jumping:

func jump():

 vertical_velocity = -jump_strength

 model.scale = Vector3(0.5, 1.5, 0.5)

 if jump_single:

 jump_single = false

 jump_double = true

 else:

 jump_double = false

Let’s look at this in detail:

•	 vertical_velocity = -jump_strength: Reverses gravity to push the player upward and

create the jump effect.

•	 model.scale = Vector3(0.5, 1.5, 0.5): Adds a squash and stretch visual effect, com-

pressing the width and exaggerating the height of the player for added game juice. You

will learn about game juice in Chapter 10.

•	 if jump_single:: Checks if this is the first jump.

•	 jump_single = false: Marks that the first jump has been used.

•	 jump_double = true: Enables a second jump while in the air.

•	 else: Checks if the first jump has already been used.

•	 jump_double = false: Disables further jumping.

This function controls both the physics and visual feedback of jumping while managing single

and double jump logic.

At this point, it is good practice to create a custom input map for our control scheme. Let’s delve

into this in the next section.

Creating an input map
Godot allows us to create our own input map, which is a system that lets us define custom actions,

such as jump or move_left, and assign one or more keys, mouse buttons, or gamepad inputs to

each action. This helps keep our code clean and flexible because we can refer to actions by name

instead of checking for specific key presses directly.

Creating a 3D Mini-Game in Godot – Part 1210

Now, let’s look at the steps for creating an input map:

1.	 First, click on Project | Project Settings | Input Map.

2.	 Click where it says Add New Action, type in the name of the action, such as left, and

then press Enter. Do this multiple times, adding names for right, up, down, and jump.

Later, we will need actions for moving the camera independently, so add actions such as

camera_left, camera_right, camera_up, and camera_down.

3.	 Now, click on the + sign for each new action and then press the key you would like to link

to the action. This is shown in Figure 8.18.

Figure 8.18 – Adding our own action events and keys

Now that we have created our own custom actions to associate with input as shown in Figure

8.18, we can go ahead and create a function for player movement.

Chapter 8 211

Implementing player controls and actions
Let’s add the handle_controls function to handle the controls for player movement:

func handle_controls(delta):

 # Movement

 var input := Vector3.ZERO

 input.x = Input.get_axis("left", "right")

 input.z = Input.get_axis("up", "down")

 input = input.rotated(Vector3.UP, view.rotation.z)

 if input.length() > 1:

 input = input.normalized()

 movement_velocity = input * movement_speed * delta

 # Jumping

 if Input.is_action_just_pressed("jump"):

 if jump_single or jump_double:

 jump()

The handle_controls function stores the player’s direction (left, right, up, or down) in the input

vector. It then adjusts the player’s movement direction (input) to align it with the current view

or orientation based on the camera position. Without making this change, movement would

always be based on the global x and z position rather than changing based on the perspective

of the player camera.

To keep the player’s speed the same in all directions (particularly diagonals), we must normal-

ize the input vector (set its length to 1). This ensures that diagonal movement isn’t faster than

moving along a single axis, which would otherwise give the player an unintended speed boost

when pressing two keys at once.

Now we must update the movement velocity based on input and speed.

To handle jumping, we must detect if the jump button has been pressed and then call the jump()

function if the player is able to jump (i.e., single or double jump).

Creating a 3D Mini-Game in Godot – Part 1212

Handling game events and feedback
When the player collects Gems, we will increase the gem count and send a signal to alert other

parts of the game that the gem count has changed. To do this, we will create our own custom

signal at the top of the script.

As the second line of code in the script, add the following:

signal gem_collected

Now, a new signal will appear in Inspector, as shown in Figure 8.19:

Figure 8.19 – Creating a custom signal

Next, we’ll create a new function in our script called collect_gems(). This function is shown

as follows:

func collect_gems():

 gems += 1

 gem_collected.emit(gems)

In this function, we will update the current count of the Gems and emit the gem_collected signal

along with the current Gem count.

Now, create a function to handle the movement of the player called handle_movement(delta),

as shown and explained in the following code:

func handle_movement(delta):

 var applied_velocity: Vector3

 applied_velocity = velocity.lerp(movement_velocity,

 delta * smoothing_factor)

 applied_velocity.y = -gravity

Chapter 8 213

 velocity = applied_velocity

 move_and_slide()

Here, the local variable applied_velocity calculates and stores the velocity of the player in each

frame. The calculation is done using the lerp function, which uses linear interpolation to slowly

move the current velocity (velocity) toward the target velocity (movement_velocity). This makes

the player’s movement much smoother.

Setting the vertical part of the velocity to negative gravity makes sure that the player is affected

by gravity while the horizontal velocity is being interpolated.

Finally, as shown in the last two lines of the code, we must update the current velocity and call

move_and_slide to move the character and detect collisions.

Now we need a function to handle the rotation of the player:

func handle_rotation(delta):

 if Vector2(velocity.z, velocity.x).length() > 0:

 rotation_direction = Vector2(velocity.z,

 velocity.x).angle()

 rotation.y = lerp_angle(rotation.y, rotation_direction,

 delta * smoothing_factor)

In the preceding code, the handle_rotation function checks to see if the player is moving and

then updates the rotation_direction global variable by calculating the angle of the movement

direction in radians.

Finally, the character’s y-axis is smoothly rotated to face the movement direction using angle

interpolation to prevent any abrupt rotation changes.

Note

Linear interpolation is a technique used to smoothly or gradually move from one

value to another by having the computer calculate and fill in all the values in between.

Creating a 3D Mini-Game in Godot – Part 1214

The final custom function for our player will handle respawning and animation effects upon

landing. Create the handle_respawn() function as shown in the code:

func handle_respawn(delta):

 var border_position_y = -10

 # Threshold below which the player respawns

 if position.y < border_position_y:

 get_tree().reload_current_scene()

 # Animation for scale (jumping and landing)

 model.scale = model.scale.lerp(Vector3(1, 1, 1), delta

 * smoothing_factor)

 # Animation when landing

 if is_on_floor() and vertical_velocity > 2 and

 !previously_floored:

 model.scale = Vector3(1.25, 0.75, 1.25)

 previously_floored = is_on_floor()

Let’s investigate the handle_respawn() function:

•	 Scene reload (respawning): If the player’s position.y falls below -10 (meaning they’ve

fallen off the level), we call get_tree().reload_current_scene() to reload the current

scene and respawn the player at the starting position.

•	 Resetting scale (restoring size): We use model.scale.lerp(Vector3(1, 1, 1), delta

* smoothing_factor) to gradually interpolate the player’s scale back to normal after any

squash-and-stretch effects from jumping or landing.

•	 Landing animation (squash effect): If the player is currently on the ground (is_on_

floor()), was falling fast (gravity > 2), and was not on the ground in the previous

frame (!previously_floored), we trigger a squash effect by changing model.scale to

Vector3(1.25, 0.75, 1.25).

•	 Grounded state tracking: Finally, we update the previously_floored variable to keep

track of whether the player was on the ground during the last frame.

Chapter 8 215

To keep all these mechanics running smoothly, we need to call our custom functions inside Godot’s

main physics loop:

func _physics_process(delta):

 handle_controls(delta)

 handle_gravity(delta)

 handle_movement(delta)

 handle_rotation(delta)

 handle_respawn(delta)

The _physics_process(delta) function is Godot’s built-in loop for physics calculations, called

every physics frame (by default, 60 times per second). It ensures our game logic runs consistently,

regardless of frame rate. By calling our custom functions here, we keep gravity, movement, jump-

ing, camera effects, and respawning in sync with the physics engine.

Now that our character controller is working – handling movement, jumping, and landing ani-

mations – it’s time to set up the camera so it follows the player correctly in 3D space. A well-con-

figured camera improves the gameplay experience by helping players stay oriented and focused

on their surroundings. In the next section, we’ll connect the camera to the player and script it to

respond smoothly to player movement and rotation.

Implementing a camera controller
To begin configuring the camera, we’ll first create a new scene that will act as the camera con-

troller and then link it to the player.

1.	 Create a new scene and add a Node3D node as the root. Rename this to View. Now add a

Camera3D node as a child. The scene tree is shown in Figure 8.20:

Figure 8.20 – Scene composition for View

Creating a 3D Mini-Game in Godot – Part 1216

2.	 Select the Camera3D node and, in Inspector, set the Current property to On – marking

this camera as the one to use. You can also adjust the field of view by setting the FOV

property to 40. This is shown in Figure 8.21:

Figure 8.21 – Setting the camera as current and adjusting FOV

3.	 Now, attach a script to the View node and save it as view.gd. Make sure that you set the

template to Empty.

Now we are ready to start building our Camera Controller script, which will let the player move

the camera and adjust the zoom using the keys on the keyboard, which we defined in the input map.

The camera needs a target node to look at or focus on. This will be our Player node. We will export

this target as a variable shown in the following code:

@export_group("Properties")

@export var target: Node

Chapter 8 217

This exported target variable will appear in Inspector, allowing us to drag and drop the Player

node into it. The camera will then know what it should follow.

Now export variables to control the zoom levels and rotation speed of the camera:

@export_group("Zoom")

@export var zoom_minimum = 16

@export var zoom_maximum = 4

@export var zoom_speed = 10

These variables define the zoom behavior: zoom_minimum and zoom_maximum determine how far in

and out the camera can zoom. Additionally, zoom_speed controls how quickly zooming happens

when the input is triggered.

Next, let’s define the rotation_speed variable:

@export_group("Rotation")

@export var rotation_speed = 120

This variable sets how quickly the camera rotates around the player when the player rotates or

when input is used to turn the camera.

We will use two standard variables to track the current rotation and zoom of the camera:

var camera_rotation: Vector3

var zoom = 10

Let’s explore this further:

•	 camera_rotation will store the current rotation angles (in degrees) of the camera

•	 zoom keeps track of the current zoom value, which we will modify over time based on

player input

Finally, we need a reference to the actual Camera3D node within this scene so we can manipu-

late it:

@onready var camera = $Camera3D

Using @onready ensures that this variable is set once the node is added to the scene and ready

to be used.

Creating a 3D Mini-Game in Godot – Part 1218

In the built-in _ready() function, we will store the initial rotation of the camera:

func _ready():

 camera_rotation = rotation_degrees # Initial rotation

This initializes the camera_rotation variable with the camera’s current rotation angles so we

can update and modify it from a known starting point.

Much like the player, the camera can be moved around the scene. Let’s create a function to handle

the camera input:

func handle_input(delta):

 # Rotation

 var input := Vector3.ZERO

 input.y = Input.get_axis("camera_left", "camera_right")

 input.x = Input.get_axis("camera_up", "camera_down")

 camera_rotation += input.limit_length(1.0) *

 rotation_speed * delta

 camera_rotation.x = clamp(camera_rotation.x, -80, -10)

 # Zooming

 zoom += Input.get_axis("zoom_in", "zoom_out") *

 zoom_speed * delta

 zoom = clamp(zoom, zoom_maximum, zoom_minimum)

The handle_input(delta) function handles camera rotation and zooming based on the input

from the player. The horizontal and vertical rotation is stored in the variable called input based

on the keys the user is pressing.

Next, the camera rotation is updated based on this input. The input is limited to a maximum of

1.0, which we multiply by the rotation_speed variable and delta to make everything smooth.

Finally, we clamp the vertical rotation to values between -80 and -10 degrees. This is to avoid

excessive tilting.

For zooming, we update the zoom variable based on the player input, which we then multiply by

zoom speed and delta to ensure smooth zooming. Again, we limit the zoom level between our

pre-defined minimum and maximum zoom values.

Chapter 8 219

Next, the _physics_process function needs to be implemented as follows:

func _physics_process(delta):

 # Set position and rotation to targets

 self.position = self.position.lerp(target.position,

 delta * 4)

 rotation_degrees =

 rotation_degrees.lerp(camera_rotation, delta * 6)

 camera.position = camera.position.lerp(Vector3(0, 0,

 zoom), 8 * delta)

 handle_input(delta)

Linear interpolation is used again to smoothly move the camera’s position towards the target

(the player).

We multiply by delta * 4 to control the speed of repositioning.

Now the current rotation is moved smoothly towards the desired rotation using linear interpo-

lation and multiplying delta * 6 for the speed.

To make a smooth zooming effect, we move the camera’s position along the z axis to match the

zoom level. We multiply by delta * 8 to control the speed.

Finally, we call the handle_input(delta) function, which handles the player’s input and controls

the movements of the camera.

Although we hope that everything will function as expected, we need to test it, correct it, and

test it again. This makes game development an iterative process in which we make a change, test

to see that the change produces the result that we are expecting and continue in this manner.

Therefore, our next step is to test what we have done so far.

Creating a 3D Mini-Game in Godot – Part 1220

Running tests
Return to the Level 1 scene. Drag the View scene into the level. Drag the Player scene into the

level. Select the View node and drag the Player scene into the Target property of View, as shown

in Figure 8.22:

Figure 8.22 – Setting the player as the target for the camera to follow

Now select the Player node. In Inspector, drag the View scene into the View property so that the

player uses our View scene as the Camera Controller. This is shown in Figure 8.23:

Figure 8.23 – Setting our View scene as the camera controller for the player

Now run the Level 1 scene and test the game. You can move the player and the camera around

the level!

Chapter 8 221

Summary
In this chapter, we explored how to build and organize scenes for a level. We started by creating

simple scenes using StaticBody3D, MeshInstance3D, and CollisionShape3D nodes to represent

objects in the game world.

Next, we designed a Player scene with a script to control movement and added a separate View

scene featuring a Camera3D node that players can control. Finally, we brought everything together

by assembling a complex level scene, combining all our individual scene components.

In the next chapter, we will add hazards and collectibles.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/godot-4-game-dev

https://packt.link/godot-4-game-dev

9
Creating a 3D Mini-Game in
Godot – Part 2

Mastering game mechanics and refining player experience are essential steps in creating engaging

levels. In this chapter, we’ll take a deeper dive into designing interactive and dynamic elements

that enhance gameplay and polish the overall feel of your level. You’ll learn how to create collect-

ible power-ups that grant temporary abilities, introduce obstacles to challenge the player, and

add visual and audio effects that bring the environment to life.

Through practical activities, you will implement a collectible that temporarily boosts the play-

er’s jump height, enabling them to reach new platforms. You will design a cannon that shoots

cannonballs, providing an exciting challenge for the player to avoid. Finally, you will polish the

level by adding audio feedback for actions, background music for atmosphere, and visual effects

such as moving clouds to create a more immersive experience.

In this chapter, we’re going to cover the following main topics:

•	 Exploring collectibles

•	 Introducing obstacles

•	 Completing our level

•	 Polishing our level

By the end of this chapter, you’ll have a fully playable and visually appealing level with mechanics

that balance challenge and reward, preparing you to tackle even more complex designs in the

future.

Creating a 3D Mini-Game in Godot – Part 2224

Technical requirements
This chapter’s code files are available here in the book’s GitHub repository: https://github.com/

PacktPublishing/Godot-4-for-Beginners/tree/main/ch9

The game assets used in this project are released under a Creative Commons Zero (CC0) license

by Essssam. Essssam has allowed us to distribute, remix, adapt, and build upon the material in

any medium or format, even for commercial purposes.

They can be found here: https://essssam.itch.io/3d-leap-land

Visit this link to check out the video of the code being run: https://packt.link/SDDNS

Exploring collectibles
Collectibles are a way of adding an objective to a level. By spreading them out, we can encour-

age the player and reward them for their exploration. Collectibles can also give the player new

abilities (either temporary or permanent) or simply add to their score. They could be collected

just for fun or as a requirement to complete the level. We will add some Gems to our level for the

player to collect.

Creating the Gem scene
Now that we understand the role of collectibles, let’s build our first one—a Gem—using a ded-

icated scene in Godot:

1.	 Create a new scene with Node3D node as the root.

2.	 Rename this Gem. Collectibles in 3D work in a similar way to 2D. In the 2D example, we

used Area2D node with CollisionShape2D node to detect when the CharacterBody2D

node entered the area of the Strawberry node. In 3D, we’ll do the same using Area3D

node with CollisionShape3D node, which allows us to detect when the CharacterBody3D

node (the player) enters the area of the Gem.

3.	 Add an Area3D node as a child of Gem.

4.	 Then add a MeshInstance3D node so that we can have a visual model of the Gem itself.

Use the gem.obj file as the mesh in the Mesh property of MeshInstance3D node. This

is very similar to adding a texture to a sprite in 2D. Remember to drag the palette.png

texture file onto the Gem mesh in the scene to give it color.

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch9
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch9
https://essssam.itch.io/3d-leap-land
https://packt.link/SDDNS

Chapter 9 225

5.	 Finally, add a CollisionShape3D node as a child of Area3D. For the Shape property, it is

simplest just to contain the Gem in a BoxShape3D. All this is shown in Figure 9.1:

Figure 9.1 – Setting up the components of the Gem scene

As shown in Figure 9.1, the Gem can detect when something enters its area. However, we will

need to program it to react in the way we intend it to. To do this, we will add a script to the Gem.

Adding the Gem script
You should ask yourself what you want the Gem to do when the player collects it. In our 2D game,

we required the player to collect all the strawberries to complete the level. In this game, the Gem

will temporarily increase the jump height of the player so that they can reach the highest platform,

which will be where the checkpoint flag is.

Creating a 3D Mini-Game in Godot – Part 2226

With the purpose of our Gem defined, let’s set it up as a temporary power-up that boosts the

player’s jump height:

1.	 Begin by attaching a new script to the Gem node.

2.	 Select the Area3D node and connect the body_entered signal as shown in Figure 9.2:

Figure 9.2 – Connect the body_entered signal of the Area3D node

3.	 We want to check if the body that entered the Gems’ area is the player. To do this, we first

need to create a group called player and add the player to it.

4.	 Return to the Player scene. In the Inspector, click on Node, then click on Groups. Click on

+ and add a group called player. Make it a Global group. This is demonstrated in Figure

9.3 as follows:

Figure 9.3 – Creating the player group

Chapter 9 227

5.	 Once you have created the global player group, as shown in Figure 9.3, you will notice

that the Player scene is now part of that group because the checkbox for the player group

is checked.

6.	 Because we only want to increase the player’s jump height temporarily, we will need to

add a timer to the player to act as a cooldown mechanism. In the Player scene, add a Timer

node as a child. Rename it to Jump_cooldown_timer, as shown in Figure 9.4:

Figure 9.4 – Adding a timer to the player to make jump strength wear off

7.	 When the player collects the Gem, we will start the timer. If the timer is running, the

player can jump higher, but once the timer times out, we return the jump strength to the

starting value. In Inspector, set the timer to One Shot and set Wait Time to 3 seconds,

as shown in Figure 9.5:

Figure 9.5 – Setting the jump power-up to last 3 seconds

8.	 As can be seen in Figure 9.5, Wait Time represents the duration of the boosted jump. If

you want the jump power-up to last longer, simply increase this value.

9.	 Next, connect the timeout() signal of Timer as shown in Figure 9.6:

Figure 9.6 – Connecting the timeout signal for the timer

Creating a 3D Mini-Game in Godot – Part 2228

10.	 Once you have connected the timeout() signal of the timer to the Gem script as shown in

Figure 9.6, add the following code:

Add a new variable on line 23 called default_jump_strength and set its value to 7:

var default_jump_strength = 7

Now, code the timeout function as shown:

func _on_jump_cooldown_timer_timeout():

 jump_strength = default_jump_strength

This code will reset the jump strength to the default value once the timer has reached the

duration (wait time).

 Quick tip: Enhance your coding experience with the AI Code Explainer

and Quick Copy features. Open this book in the next-gen Packt Reader. Click

the Copy button (1) to quickly copy code into your coding environment,

or click the Explain button (2) to get the AI assistant to explain a block of

code to you.

 The next-gen Packt Reader is included for free with the purchase of this

book. Scan the QR code OR go to packtpub.com/unlock, then use the search

bar to find this book by name. Double-check the edition shown to make sure

you get the right one.

packtpub.com/unlock

Chapter 9 229

11.	 Before we leave the Player script, we should add a reference variable for the timer so that

we can start it from the Gem scene. Underneath the onready variable for MeshInstance3D,

add one for the timer, as shown here:

@onready var model = $MeshInstance3D

@onready var jump_cooldown_timer = $Jump_cooldown_timer

12.	 In the Player script, add a variable for the power-up jump strength:

var powerup_jump_strength = 10

Now add a function to increase the jump strength and start the timer when the Gem is

collected:

func on_gem_collected():

 jump_cooldown_timer.start()

 jump_strength = powerup_jump_strength

13.	 The Player scene is now part of the player group. It also has a timer set up to time the

duration of the increased jump strength, and we have provided access to the timer. Now

return to the Gem scene to complete the body_entered() function:

func _on_area_3d_body_entered(body):

 if body.is_in_group("player"):

 body.on_gem_collected()

 queue_free()

This code will be triggered when a body enters the area of the Gem. If that body is part of the

player group, the body (player) will increase jump_strength to 10. The jump_cool_down

timer of the body will start and run until it times out, queue_free() ensures that the Gem

will be removed from the scene.

14.	 Instantiate a Gem scene into the Level scene (in the Level scene, hit Ctrl + Shift + A, then

choose the Gem scene) and test the player can now reach the highest platform once they

have collected the Gem. You can now place Gems strategically around the level.

The player has a reward in the form of Gems, which add strength to the jumps. Now we will add

an obstacle to the level so that the rewards are not so easy to get.

Creating a 3D Mini-Game in Godot – Part 2230

Introducing obstacles
Obstacles introduce challenge and excitement to a level by creating hazards that the player must

navigate around or overcome. They encourage players to strategize, improve their skills, and stay

engaged as they progress through the game. Obstacles can take many forms, such as moving

platforms, spikes, or environmental traps, and can add variety to the gameplay experience. In

this section, we’ll add some obstacles to our level to test the player’s agility and timing, creating

a more dynamic and rewarding experience.

Creating the Cannon scene
A fun and dynamic obstacle to add to the level is a cannon that regularly fires a bullet, which the

player will have to avoid before reaching the checkpoint. The cannon is static and purely deco-

rative or set dressing. However, the bullet will move from the cannon, across the level. Set up the

Cannon scene by following the steps here:

1.	 Create a new scene with Node3D node as the root. Rename this to Cannon.

2.	 Add a StaticBody3D node as a child.

3.	 Add a MeshInstance3D node and use cannon.obj for the Mesh property.

4.	 Remember to drag palette.png to texture the cannon object.

5.	 Add a CollisionShape3D node and use a New BoxShape3D property to enclose the cannon.

6.	 Add a Timer node and rename it to Cannonball_timer.

7.	 Add a Marker3D node and place it at the mouth/opening of the cannon: x position 0.0, y

position 0.5, and z position –1.0.

Following these steps, the Cannon scene tree should look like the one shown in Figure 9.7:

Figure 9.7 – Scene tree for the Cannon scene

Chapter 9 231

The components in Figure 9.7 will be used to make the cannon functional. It is a static body be-

cause it will not move, but the player can jump onto it and stand on it. The cannonball timer will

regularly spawn cannonballs, which move across the level. The marker is used to pinpoint the

position at which the cannonballs should appear.

We want the cannon to shoot a ball every three seconds. To do this, adjust the settings of the

Cannonball_timer node, as shown in Figure 9.8:

Figure 9.8 – Settings for the cannonball timer

With the settings shown in Figure 9.8, the cannon will automatically fire a ball every three seconds.

Adjust Wait Time if you want to change the firing rate.

The cannon is now ready for scripting; however, we still need a ball or bullet for it to fire. We shall

now prepare the Ball scene so that there is a projectile to launch from the cannon.

Creating the Ball scene
Create a new scene and use a CharacterBody3D node as the root. Rename it to Ball.

It’s important to note that we would usually use an Area3D node for a projectile, since this allows

us to detect collisions and trigger events such as applying damage or destroying the projectile

on impact. However, in our game, the cannonball is meant to act only as a physical obstacle—it

won’t damage the player but should simply push them if they come into contact.

Follow these steps to complete the Ball scene:

1.	 You have already created a new scene with CharacterBody3D node as the root.

2.	 You have renamed the root node to Ball.

3.	 Add a MeshInstance3D node as a child and use Bullet.obj as the Mesh property.

4.	 Apply palette.png as the texture of the bullet object.

Creating a 3D Mini-Game in Godot – Part 2232

5.	 Add a CollisionShape3D node and surround the bullet with a new CapsuleShape3D.

6.	 Rotate the CapsuleShape3D on the x axis and resize it to neatly fit the model.

7.	 Add a Timer node and rename it to Destroy_timer.

Following these steps, the Ball scene tree should look like Figure 9.9:

Figure 9.9 – Components of the Ball scene

An important component seen in Figure 9.9 is the Destroy_timer node for the ball. It represents

the lifetime of the ball. Once it times out, we destroy the ball and remove the scene from the level.

Adjust the settings of the timer to match those shown in Figure 9.10:

Figure 9.10 – Settings for the timer to destroy the ball

Figure 9.10 sets the lifetime of the ball to 5 seconds; the timer auto-starts but only runs once for each

ball. The ball needs to travel across the level and be destroyed. To do that, we will write a script.

Chapter 9 233

Writing the Ball script
A cannon isn’t much use without cannonballs—so let’s bring them to life with a script that han-

dles their movement and collisions. Follow these steps:

1.	 Attach a script to the Ball node. Set a speed variable and give it the value 3. This is an

export variable so that you can change this value while testing the game, so that you can

find a value that suits your game best:

@export var speed = 3

2.	 In the process function, we will move the ball along the z axis. This is the depth axis and

represents the ball moving toward or away from us into or out of the screen. To move

the ball smoothly, we will change the position by multiplying speed by delta, as follows:

func _process(delta):

 position.z -= speed * delta

3.	 Connect the timeout() signal of Destroy_timer and in it code the ball to be destroyed

once it has reached the wait time of the timer:

func _on_destroy_timer_timeout():

 queue_free()

With this script, the cannonball can do the two tasks we wanted it to. It can move across the level,

and it is destroyed after a certain time. Now script the cannon to spawn cannonballs.

Writing the Cannon script
To write the Cannon script, first, we’ll attach a script to the Cannon node. Throughout the book,

I have used @onready var for variables that should be initialized when the scene is first created.

This time, I am going to show you an alternative to this shortcut by using the _ready function to

initialize variables. Let’s see this here:

1.	 We are going to instance the Ball scene (spawn a ball), and so we need a scene variable to

store a reference to the Ball scene. We also need a variable to represent the ball itself (the

ball variable), which will be an instance of the scene. We also need a reference variable

(the marker variable) to the Marker3D node so that we can position the ball to appear

where the invisible marker is:

var ball_scene

var ball_instance

var marker

Creating a 3D Mini-Game in Godot – Part 2234

2.	 None of the variables in the preceding code have been initialized, which is to say that

they do not have starting values. We will assign values to them in the _ready() function:

Called when the node is added to the scene tree

func _ready():

 # Load (preload) the Ball scene so we can create a new instance
of it

 ball_scene = preload("res://Assets/Scenes/ball.tscn")

 # Load (preload) the Smoke Particle scene for visual effects

 particles = preload("res://Assets/Scenes/smoke.tscn")

 # Create an instance of the Ball from the preloaded scene

 ball_instance = ball_scene.instantiate()

 # Get a reference to the Marker3D node in the scene

 marker = $Marker3D

 # Set the Ball's position to the same location as the Marker3D

 ball_instance.position = marker.position

 # Add the ball instance to the current scene as a child

 add_child(ball_instance)

The ready function is called once when the cannon is added to the scene to set the initial

state of the cannon. Let’s go into the line-by-line explanation of the code here:

•	 The cannonball scene is loaded from the specified path, and we store it in the

scene variable. The preload keyword ensures the scene is ready to use when the

game runs and offers a performance improvement over the load function when

using GDScript.

•	 An instance of the Ball scene (a copy of the original scene) is stored in the ball

variable.

•	 A reference to the Marker3D node is stored in the marker variable.

•	 The position of the newly created cannonball is set to match the position of marker.

•	 Finally, the ball instance is added to the Cannon node hierarchy (scene tree),

making it visible and active in the scene.

Chapter 9 235

3.	 For the cannon to fire cannonballs at a regular rate, we need to use Cannonball_timer.

Connect the timeout() signal and add the code that follows:

func _on_cannonball_timer_timeout():

 ball = scene.instantiate()

 ball.position = marker.position

 add_child(ball)

Because we set the Wait Time to 3 seconds, the code in the timeout() function will run

every 3 seconds. A new instance of a cannonball will be created at the position of marker,

and the scene will be added to the hierarchy of the Cannon scene. This timer ensures that

a ball is fired repeatedly from the cannon.

4.	 Instantiate the Cannon scene in the Level scene and test that everything works as you

expect it to.

The level now has collectibles and obstacles. We should focus now on the win condition or ob-

jective. For this, we will place a flag that the user must reach to complete the level.

Completing our level
To complete the level, the player must reach the flag. The flag is on the highest platform, and the

only way to reach it is by getting the Gem to power up the player’s jump, avoiding the cannon-

balls, and racing to the flag.

These are all design decisions, and the assets in the level allow us to consider different options.

We could have required the player to obtain a key to unlock the gates to reach the flag. This is why

game development is so rewarding! Now we should make a scene for the flag.

Creating the Flag scene
Before creating the Flag scene, it would be helpful to decide what a flag should do, as this will

help us determine which nodes to use. In our simple case, the only thing the flag needs to do is

quit the game when the player touches it. Of course, if we were making more levels, we could

just as easily switch levels. Knowing this, an Area3D node is the best option for the flag. Follow

these steps to set it up:

1.	 Create a new scene using Area3D as the root node.

2.	 Rename it Flag.

3.	 Add a MeshInstance3D node and use flag.obj as the Mesh property.

Creating a 3D Mini-Game in Godot – Part 2236

4.	 Apply palette.png to texture the flag.

5.	 Add CollisionShape3D node as a child of the flag.

6.	 Enclose the flag with a New BoxShape3D.

After following the steps, your Flag scene hierarchy will look like the one shown in

Figure 9.11:

Figure 9.11 – The Flag scene hierarchy

7.	 Once again, we are utilizing the versatility of the Area3D node to detect when a Charac-

terBody node, such as the player, enters its space. Add a script to the Flag node and save

it as flag.gd.

8.	 Now connect the _on_body_entered signal of the Flag node and then code it as follows:

extends Area3D

func _on_body_entered(body):

 if body.is_in_group("player"):

 get_tree().quit()

This simple code tests whether the body that entered the space of the flag was in the player group.

If it is, we exit the game.

Changing scenes
It is beyond the scope of this book to create multiple levels; however, if you had created another

level and wanted to switch to it once the player reaches the flag, it is quite simple to do so.

Firstly, you would need to have your second level created and saved as a scene, such as level_2.

tscn. Save the path to the scene file in a variable and then use the built-in get_tree.change_

scene_to_file() function to switch to the next scene. This is shown in the code here:

extends Area3D

func _on_body_entered(body):

 if body.is_in_group("player"):

 var next_scene_file =

 "res://scenes/level_2.tscn"

 get_tree().change_scene_to_file(next_scene_file)

Chapter 9 237

This code checks whether the player has entered a specific area. If so, it loads the next level of the

game. It uses groups to ensure that only the player triggers the action. It uses the scene path to

determine what level to load. This is explained line by line here:

•	 When a body enters the area of the flag

•	 The code checks whether that body is in the "player" group

•	 Store the path to the level 2 scene file in a variable called next_scene

•	 Use the change_scene_to_file method to change to the scene saved

Now that the player has a power-up to collect, an obstacle to avoid, and an objective to reach,

the level is minimally playable. Let’s now work on adding polish to the level in the form of things

such as particles, movement, and color.

Polishing our level
Creating a functional level is an important first step in game development, but making it visually

appealing and engaging for players requires an extra layer of effort—this is where level polish

comes in.

Polishing a level means enhancing its look and feel with elements such as dynamic visuals, smooth

animations, and vibrant effects. These additions not only make your game more immersive but

also help convey mood, add personality, and make gameplay more satisfying.

In this section, we’ll explore how to add movement, color, and particle effects to breathe life into

your level, turning it from a basic design into an experience that players will enjoy.

Godot provides a node called WorldEnviornment, which is used to set the default environment

properties for the entire scene, including post-processing effects, lighting, and background settings.

In the Level 1 scene, add a WorldEnvironment node. In Inspector, find the Environment property

and choose New Environment. This is shown in Figure 9.12 as follows:

Figure 9.12 – Adding a new environment to the world

Creating a 3D Mini-Game in Godot – Part 2238

Once we have loaded a new environment, as shown in Figure 9.12, we now have access to many

more properties and settings.

Setting the background color
Change the background color of the level to sky blue by clicking on Environment, choosing Back-

ground, then Custom Color, and finding sky blue. This is shown in Figure 9.13:

Figure 9.13 – Setting a custom background color for the level

Now that we have added background color to the level, as shown in Figure 9.13, we should add

some smoke effects to the cannon after each shot fired.

Adding particle effects
Particle effects are a powerful tool in game development for adding visual flair and enhancing

the atmosphere of your game. They can simulate various natural phenomena such as fire, smoke,

rain, or explosions, as well as creating abstract effects such as sparkles, trails, or magical glows. By

incorporating particle effects, you can make your game feel more dynamic and engaging, helping

players better connect with the world you’ve created. In this section, we explore how to create

and customize particle effects to bring your scenes to life.

Creating the smoke scene
As mentioned earlier, we are going to create a little puff of smoke that rises into the sky after each

cannon shot. We will make use of one of the cloud models, which we will scale down and rotate.

Follow these steps to create the smoke scene:

1.	 Create a new scene using CPUParticles3D as the root node.

2.	 Rename the node to Smoke.

3.	 Expand the Drawing section and find the Mesh property.

Chapter 9 239

4.	 Drag the cloud_1.obj file into the Mesh property. This is shown in Figure 9.14:

Figure 9.14 – Using one of the clouds as Mesh to represent smoke

5.	 Remember to texture the mesh by applying the palette.png texture.

6.	 Expand the Gravity section and make the y value positive. Once you do this, the smoke rises.

7.	 Reduce the Amount property to 1, so that a puff of smoke will rise from the cannon.

8.	 Set the One Shot property to On. This is shown in Figure 9.15:

Figure 9.15 – Changing the amount and setting One Shot to On

Creating a 3D Mini-Game in Godot – Part 2240

9.	 Orient the cloud vertically by expanding the Transform section of Node3D and rotating

the z axis by 90 degrees. This is shown in Figure 9.16:

Figure 9.16 – Rotating the model on the z axis to make it vertical

10.	 Adjust the scale of the cloud over time, from 0 to full size (1). Do this by expanding the

Scale section and setting Scale Amount Minimum to 0 and Scale Amount Maximum to 1.

11.	 Create a Scale Amount Curve by clicking on New Curve and adjusting the scale over time,

as shown in Figure 9.17:

Figure 9.17 – Setting min, max, and scale curve

Chapter 9 241

This sets the scale from 0 to 1; however, I recommend experimenting with the curve values

until you find a result that you are happy with.

The Smoke scene is complete and ready to be instanced in the Cannon script. When we

instance a cannonball from within the Cannon script, we should instance the smoke just

afterward. Now, let’s return to the Cannon script.

12.	 Add two new global variables called particles (to reference the particles scene file) and

smoke (to be an instance of the scene):

extends Node3D

var ball_scene

var ball_instance

var marker

var particles

var smoke

13.	 Adapt the _ready function so that we also preload the smoke particles scene. The new

lines are commented in the following code. Create an instance of the smoke, position it at

the marker, make it a child of the Cannon scene, and set the emitting property to true:

func _ready():

 scene = preload("res://scenes/ball.tscn")

 particles = preload("res://scenes/smoke.tscn")

 ball = scene.instantiate()

 # Create an instance of the smoke particles

 smoke = particles.instantiate()

 marker = $Marker3D

 ball.position = marker.position

 # Also place the smoke effect at the Marker3D position

 smoke.position = marker.position

 add_child(ball)

 # Add the smoke effect to the current scene as a child

 add_child(smoke)

Creating a 3D Mini-Game in Godot – Part 2242

 # Start the smoke particle effect so it emits immediately

 smoke.emitting = true

14.	 Finally, we must create new instances in the timeout function so that a puff of smoke

appears each time the cannon fires:

func _on_cannonball_timer_timeout():

 ball_instance = ball_scene.instantiate()

 smoke = particles.instantiate()

 smoke.position = marker.position

 Ball_instance.position = marker.position

 add_child(ball_instance)

 add_child(smoke)

 smoke.emitting = true

With these adaptations to the script for the cannon, you can test the level again. You will notice

now that each time a cannonball is fired, two little clouds of smoke trail into the air. This is a

simple way to add some dynamism to the level.

Another way to make a level more engaging is to add audio, such as sound effects and background

music. In the next section, we will learn how to work with audio.

Adding audio to our level
It would be fun if the player character made a noise when it jumped. Let’s add some audio!

1.	 To do this, we need to record a sound ourselves or find one that is in the public domain with

a Creative Commons license. Here’s one we can use for this project: https://opengameart.

org/content/jump-sound-16bit.

2.	 Download the jump.wav file. In FileSystem, go to the assets folder, and create a subfolder

called audio. Drop the sound file in there as shown in Figure 9.18:

https://opengameart.org/content/jump-sound-16bit
https://opengameart.org/content/jump-sound-16bit

Chapter 9 243

Figure 9.18 – Adding the jump.wav file to our audio folder

3.	 Open the Player scene and add an AudioStreamPlayer node as a child. In the Stream

property, drag and drop the audio file. Leave the rest of the properties unchanged. This

is shown in Figure 9.19:

Figure 9.19 – Giving AudioStreamPlayer a sound file to play

Creating a 3D Mini-Game in Godot – Part 2244

4.	 Open the Player script and add a reference variable for AudioStreamPlayer to your list

of onready variables:

@onready var model = $MeshInstance3D

@onready var jump_cooldown_timer = $Jump_cooldown_timer

@onready var audio_stream_player = $AudioStreamPlayer

5.	 We only want to play the jump sound effect when the player jumps. To do this, we tell

AudioStreamPlayer to play the file when the jump function runs. Add that request as the

first line in the jump function:

func jump():

 audio_stream_player.play()

6.	 That is all that is required to play a sound effect when the player jumps.

But what if we wanted to play an effect when the player lands?

1.	 Grab another CC0-licensed sound effect from Open Game Art (https://opengameart.

org/content/jump-landing-sound) and add it to the audio folder.

2.	 To play the right sound at the right time, the code must be adjusted to first load the cor-

responding audio file into AudioStreamPlayer before attempting to play it.

3.	 Add another line as the first line in the jump function to first load the file before playing it:

func jump():

 audio_stream_player.stream =

 preload("res://assets/audio/jump.wav")

 audio_stream_player.play()

4.	 Similarly, when the player lands, we must load the corresponding audio file and then

play it. Do so by adding these lines after scaling the player when it lands, in the handle_

respawn() function:

if is_on_floor() and gravity > 2 and !previously_floored:

 model.scale = Vector3(1.25, 0.75, 1.25)

 audio_stream_player.stream =

 preload("res://assets/audio/jumpland.wav")

 audio_stream_player.play()

https://opengameart.org/content/jump-landing-sound
https://opengameart.org/content/jump-landing-sound

Chapter 9 245

5.	 Using the technique in the code, we ensured that we loaded the correct audio file into the

player before we played it. The next step is to add background music to the level. Start by

downloading the background music (https://opengameart.org/content/background-

music-2-the-ice-caves) and adding it to the audio folder.

6.	 This time, we will add an AudioStreamPlayer node to the Level 1 scene. We will drag

and drop the Background Music 2.ogg file into the Stream property. Set the Autoplay

property to On. This is shown in Figure 9.20:

Figure 9.20 – Setting the Autoplay property of the Stream player

7.	 There is one more step, and that is to ensure that the track is looping. Expand the Param-

eters section and turn on looping as shown in Figure 9.21:

Figure 9.21 – Turning looping on for the background music

As shown in Figure 9.21, by turning on looping, we can have a background music track that plays

repeatedly in the level.

https://opengameart.org/content/background-music-2-the-ice-caves
https://opengameart.org/content/background-music-2-the-ice-caves

Creating a 3D Mini-Game in Godot – Part 2246

In game design, repetitive movement is often used to create dynamic and lifelike effects, such

as clouds drifting across the sky, waves lapping at the shore, or power-ups slowly rotating or

hovering up and down. This type of movement is typically achieved by adjusting an object’s

properties (such as position, size, or angle) back and forth in a smooth and natural way using the

oscillations of a sine wave. In our final section, we will use the sine function to move our clouds

slowly back and forth in our level.

Using the sine function
As mentioned earlier, rather than having the clouds sitting still in the sky, we will drift them back

and forth using a sine wave. Return to the Cloud scene and attach a script to the root node (Cloud).

The entire code to make the clouds drift is given here and then explained line by line afterward:

extends Node3D

@onready var mesh_instance_3d: MeshInstance3D = $MeshInstance3D

var time: float

func _process(delta):

 time += delta

 mesh_instance_3d.position =

 vector3(get_sine(),get_sine(),get_sine())

func get_sine():

 return sin(time * 0.5) * 0.5

Let’s break down this code here for a better understanding:

•	 A variable called time is declared as a float to track the elapsed time. It is used to calculate

the sine wave for movement.

•	 A reference is created for the StaticBody3D node of the cloud since this is essentially the

cloud object that we will be moving.

•	 In the process function, we increase the time variable for each frame. This ensures that

the sine wave animation progresses smoothly over time.

•	 Next, update the position property of the cloud (StaticBody3D) in every frame.

•	 The x, y, and z coordinates are set using the get_sine() function, which produces a smooth

oscillating value.

•	 The get_sine() function calculates a smooth oscillation based on the time variable.

Chapter 9 247

•	 time * 0.5 is the frequency of the wave, and this slows down the oscillation.

•	 Multiplying the result by 0.5 outside the brackets is the amplitude of the wave. Here, we

are reducing it, making the movement less extreme.

•	 The entire result is returned for use in updating the position in the transform property.

In essence, this script creates a smooth, oscillating movement for the cloud. The sine wave makes

the movement more natural.

Summary
In this chapter, you transformed your level into a dynamic and engaging experience by adding

key gameplay elements and refining its overall presentation. You created a collectible power-up

that temporarily boosted the player’s jump height, allowing them to access higher platforms and

complete the level. We introduced a cannon obstacle, which added a layer of challenge as the

player had to avoid its cannonballs.

To complete the level, you implemented a flag mechanic, giving the player a clear and satisfying

objective. Finally, you polished the level by adding sound effects for feedback, background music

for atmosphere, and moving clouds for visual appeal.

At the end of this chapter, you’ve not only developed the essential mechanics of a fun and in-

teractive level but also enhanced its presentation, making it more immersive and enjoyable for

players. These skills will serve as a solid foundation for creating even more intricate and polished

levels in the future.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

10
Adding Game Juice

Game development isn’t just about mechanics and level design—it’s also about how the game

feels to play. This is where game juice comes in. Game juice refers to all the little enhancements

that make a game more satisfying and responsive, from visual effects and sound design to UI

feedback and animations. Adding game juice can turn a basic game into a polished, engaging

experience that players love.

In this chapter, we’ll explore what game juice is and why it’s important. You’ll learn how to make

your game feel more polished and responsive by adding dynamic effects that provide feedback to

the player. We’ll implement several juicy elements to enhance the experience: a confetti cannon

that bursts when the player reaches a checkpoint, a heads-up display (HUD)-based health bar

where hearts gray out as health decreases, and immersive background audio and sound effects

that bring the level to life.

In this chapter, we’re going to cover the following main topics:

•	 Understanding game juice

•	 Implementing a health bar HUD

•	 Adding a hit animation

•	 Creating a confetti cannon effect

•	 Adding audio and sound effects

By the end of this chapter, you’ll understand how small changes can dramatically improve the

feel of your game. You’ll have practical experience in implementing visual and audio feedback

that enhances player immersion, making your game more enjoyable and satisfying to play.

Adding Game Juice250

Let’s begin to give your game that extra polish it deserves!

Technical requirements
By this point in the book, you should know how to do the following:

•	 Create nodes and scenes (see Chapter 2)

•	 Work through the Pixel Adventure project from Chapter 7

You should also know about variables and functions (see Chapter 8) for use in GDScript.

This chapter’s code files are available here in the book’s GitHub repository: https://github.com/
PacktPublishing/Godot-4-for-Beginners/tree/main/ch10

Visit this link to check out the video of the code being run: https://packt.link/W1K5s

Understanding game juice
When a game feels good to play, we now know that it’s usually thanks to something called game

juice. This refers to small but impactful enhancements—such as subtle animations, particle

effects, or sound design—that make the gameplay more responsive, satisfying, and polished.

Juice doesn’t change the mechanics of the game, but it transforms how the player experiences

them. Hence, adding juice to a game involves taking a working game and adding layers of satis-

faction to improve its feel. For the player, satisfaction is created by the senses, and so we need to

feed those senses. Creating visual effects and adding audio will enhance the player’s experience.

You can imagine this as if you are squeezing every drop of juice out of a delicious orange.

Some examples of using game juice to improve the player experience are the following:

•	 A standard jump can feel more impactful with squash and stretch animation

•	 Collecting a coin feels more rewarding with a flash effect and a satisfying sound

•	 Taking damage in combat is more engaging with screen shake and a brief pause for impact

In the next section, we’ll explore the foundational aspects of juicing.

https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch10
https://github.com/PacktPublishing/Godot-4-for-Beginners/tree/main/ch10
https://packt.link/W1K5s

Chapter 10 251

Foundations of juicing: animation and audio
This section will introduce you to the foundational techniques of juicing, which we’ll soon apply

in practical ways, such as a hit animation, health bar HUD, confetti cannon, and audio feedback.

These basics are just as useful in 3D as they are in 2D, and they’ll elevate your game no matter

the genre or perspective.

Visual feedback (animation and particle effects)
Visual feedback plays a key role in making actions feel impactful. Two common techniques used

in game juicing are as follows:

•	 Squash and stretch: Slightly deforming your character’s scale when they land, jump, or

change direction gives them a bouncy, lively appearance. This animation technique makes

movement feel more expressive.

•	 Particle effects: Adding dust trails when the player runs or jumps makes movement more

dynamic and grounded. Even small bursts of particles can communicate energy and mo-

tion clearly.

You’ll soon be implementing these ideas in your own game, including the following:

•	 A hit animation that makes enemies react visually to player attacks

•	 A confetti cannon that celebrates success with an explosion of particles

Audio feedback (music and sound effects)
Audio is just as important as visuals when it comes to creating a juicy experience. It reinforces

player actions, adds personality, and builds atmosphere. Consider the following:

•	 Sound effects: A satisfying squish when landing or a crunchy impact when hitting ene-

mies can bring a scene to life

•	 Background music: A well-chosen track can set the emotional tone of your level, guiding

how players feel as they explore

We’ll be exploring how to implement both ambient music and character sound effects later in

this chapter.

Implementing a health bar HUD
A common user interface (UI) element in a game that visually represents the player’s health

is a health bar as part of the HUD. Its purpose is to provide immediate feedback on how much

damage the player has taken and how close they are to death.

Adding Game Juice252

Three examples of how health is displayed to the user are shown in Figure 10.1:

Figure 10.1 – Three different ways to display health in a game

In the subsequent section, we’ll implement a heart-based health system, where each heart rep-

resents a portion of the player’s health, and hearts become grayed out as damage is taken. This ap-

proach makes the information easy to read at a glance while adding a bit of visual appeal to the UI.

Developing a heart-based health system
To implement our heart-based health system, we’ll set up the UI, write the logic to update the

hearts based on the player’s health, and ensure the system reacts dynamically as damage is done.

Let’s walk through the steps to bring it to life.

Let’s begin by opening the Pixel Adventure Godot project and adding a new scene with an

AnimatedSprite2D node as the root node. Rename the node to HUD and save the scene as hud.

tscn, as shown in Figure 10.2:

Figure 10.2 – The HUD scene to represent player life

We are going to use a simple technique to indicate the loss of health. The health bar will begin

with three full red hearts. Each time the player is injured, we will change one of the hearts from

red to gray.

You can use free and open source image editing software, such as LibreSprite (https://

libresprite.github.io/#!/), to draw your own hearts and create four frames representing

the changing health, as I have done in Figure 10.3:

https://libresprite.github.io/#!/
https://libresprite.github.io/#!/

Chapter 10 253

Figure 10.3 – Frames of hearts representing the changing health of the player

When the images of your hearts are ready, go to the Sprite Frames property of the Animated-

Sprite2D node named HUD, and select New SpriteFrames, as shown in Figure 10.4:

Figure 10.4 – New SpriteFrames for the AnimatedSprite2D node

 Resources

If you don’t feel comfortable drawing your own hearts, you can use the one created by

Shlok Gupta. However, you will still need to modify it in order to have hearts at differ-

ent levels of health. It is available on their Itch page here: https://gamedevshlok.

itch.io/heartpack.

https://gamedevshlok.itch.io/heartpack
https://gamedevshlok.itch.io/heartpack

Adding Game Juice254

Now, click on the word SpriteFrames in the property to open the Animation Frames window.

Rename the default animation to idle and add the four frames, as shown in Figure 10.5:

Figure 10.5 – The idle animation for the health bar has four frames for the health total

As you can see in Figure 10.5, whenever the player loses health, we will change the animation

frames to match. We don’t need to add a script to the health bar; all we need is a reference to it

in the script attached to level1.tscn.

In the Level1 scene, drag your newly created hud.tscn into your level and place it toward the top

left, as shown in Figure 10.6:

Figure 10.6 – A good spot for the HUD

Chapter 10 255

Once you have placed the HUD in the scene, your scene tree for Level1 should include the HUD

scene and look like the scene hierarchy shown in Figure 10.7:

Figure 10.7 – The scene hierarchy for level 1

With the scene in place as shown in Figure 10.7, it is time to open the script attached to Level1

and make some additions so that the HUD will update the hearts according to how much health

the player has.

Updating the HUD in the Level script
Now that our heart-based health system is in place, we need to make sure the player’s current

health is reflected on the screen. To do this, we’ll update the HUD from the Level script. The

HUD will visually change depending on how many hearts the player has left, graying out hearts

as damage is taken.

We’ll begin by adding an @onready variable to reference the HUD scene. In the _process() function,

we will update the HUD’s frame property to match the player’s current health. This determines

how many hearts are displayed as active (red) versus inactive (gray). For example, if the player

has three hearts, we’ll set the HUD frame to 3 to show three red hearts.

Here’s the updated Level script:

extends Node2D

@onready var update_health_hud = $HUD

@onready var player = $Player

Adding Game Juice256

@onready var strawberries = $Collectibles

func _ready():

 player.level_strawberries = strawberries.get_child_count()

func _process(delta):

 update_health_hud.frame = player.get_hearts()

Let’s break down the code to understand it better:

•	 update_hud stores a reference to the HUD node so we can easily access and update it.

•	 In _process(), which runs every frame, we set the HUD’s frame to reflect the player’s

current number of hearts. This means the HUD will visually update in real time as the

player gains or loses health.

The line player.get_hearts() relies on a new function we need to create inside the Player script.

This function simply returns the current number of hearts the player has:

func get_hearts():

 return hearts

To support this, add a new variable at the top of the Player script to store the player’s health:

var hearts = 3

The question is: why do we add this variable?

The hearts variable tracks how much health the player has. We initialize it to 3, meaning the

player starts with full health. As the player takes damage, this value will decrease.

Next, let’s create a hurt() function to reduce the player’s health when they are injured:

func hurt():

 hearts -= 1

 if hearts <= 0:

 death()

This function subtracts one heart whenever the player is hurt. If hearts reaches 0, we trigger the

death() function, which we’ll now create in the following code:

func death():

 #shoot the player upward upon death

 velocity.y = -600

Chapter 10 257

 #disable collisions so the player falls through the level

 set_collision_mask_value(2, false)

 set_collision_mask_value(3, false)

Here’s a breakdown of the preceding code:

•	 velocity.y = -600 shoots the player upward when they die, adding a bit of juice to make

the death feel more dramatic

•	 We disable collisions with the environment by turning off the level’s collision layers, al-

lowing the player to fall off the screen

Another bit of game juice that provides great visual feedback to the player—helping them quick-

ly recognize when they’ve taken damage—is a hit flash effect. This common technique briefly

changes the player’s appearance (often to white or red) to signal that they’ve been hurt, making

the experience feel more responsive and polished.

Adding a hit animation
In this section, we’ll create a simple animation that causes the player to flash white for a short time

when they’re injured. This effect not only makes the moment of taking damage more dramatic but

also helps the player stay aware of their current health status, especially in fast-paced moments.

In your file explorer, locate the Pixel Adventure/Main Characters/Ninja Frog folder (you can

download all the assets here: https://pixelfrog-assets.itch.io/) and drag the Hit.png file

into the Godot FileSystem.

In the Player scene, select the AnimatedSprite2D node and add a new animation called hit.

Now, click on the Add Frames from Sprite Sheet button and set it to 7 horizontal frames and 1

vertical frame. Then, select all frames and import them. Set the animation speed to 16 FPS and

not looping. The hit animation will look as it does in Figure 10.8:

Figure 10.8 – The new hit animation

https://pixelfrog-assets.itch.io/

Adding Game Juice258

To ensure that our animation runs when it needs to, add a helper variable called isHit to our

group of vars at the top of the Player script. It will be a Boolean, which is set to false by default:

var isHit = false

Now, modify the hurt() function so that isHit is set to true when the player takes damage:

func hurt():

 isHit = true

 hearts -= 1

 if hearts <= 0:

 death()

Now, we can modify our animate() function to include checks on the number of hearts the player

has, as well as whether they have been hit or not:

func animate():

 if isHit:

 animations.play("hit")

 await animations.animation_finished

 animations.play("idle") # transition back to idle

 return # Prevent further changes this frame

 if hearts == 0:

 return # Dead, don't animate further

 # Stationary player

 Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader and a free PDF/ePub copy of this book are included

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use

the search bar to find this book by name. Double-check the edition shown to

make sure you get the right one.

http://packtpub.com/unlock

Chapter 10 259

 if velocity.x == 0 and velocity.y == 0:

 animations.play("idle")

 # Player moving right

 elif velocity.x >= 0 and velocity.y == 0:

 animations.play("run")

 animations.flip_h = false

 # Player moving left

 elif velocity.x <= 0 and velocity.y == 0:

 animations.play("run")

 animations.flip_h = true

 # Player is falling

 elif velocity.y > 0 and !is_wall_sliding:

 animations.play("fall")

 # Player is jumping (initial jump)

 elif velocity.y < 0 and jump_count == 0:

 animations.play("jump")

 # Player is double-jumping

 elif !is_on_floor() and jump_count > 0 and

 !is_wall_sliding:

 animations.play("double_jump")

 # Player is wall sliding on the right

 elif is_wall_sliding and

 Input.is_action_pressed("ui_right"):

 animations.flip_h = false

 animations.play("wall_slide")

 # Player is wall sliding on the left

 elif is_wall_sliding and

 Input.is_action_pressed("ui_left"):

 animations.flip_h = true

 animations.play("wall_slide")

Adding Game Juice260

The animate() function is responsible for switching between different animation states based on

the player’s movement, health, and whether they’ve been hit. Let’s walk through each condition

to understand what’s happening.

First, let’s look at the code for the idle state:

if velocity.x == 0 && velocity.y == 0 && hearts > 0 && isHit == false:

 animations.play("idle")

If the player is not moving (velocity.x == 0 and velocity.y == 0), still alive (hearts > 0),

and hasn’t just been hit (isHit == false), we play the "idle" animation.

Next, let’s examine the hit state:

elif isHit:

 animations.play("hit")

If the player has been hit, we play the "hit" animation to show a reaction. This usually plays for

a short time before reverting to other animations.

This is how we detect running to the right:

elif velocity.x >= 0 && velocity.y == 0 && hearts > 0:

 animations.play("run")

 animations.flip_h = false

If the player is moving horizontally to the right (positive x-velocity), not moving vertically, and

still alive, we play the "run" animation and make sure the sprite is facing right (flip_h = false).

The code for running left is similar:

elif velocity.x <= 0 && velocity.y == 0 && hearts > 0:

 animations.play("run")

 animations.flip_h = true

This will be the same as the previous condition, but for moving left. We flip the sprite horizontally

(flip_h = true) to face the left direction.

Here’s how falling is handled:

elif velocity.y > 0 and !is_wall_sliding && hearts > 0:

 animations.play("fall")

Chapter 10 261

If the player is moving downward (velocity.y > 0), not sliding on a wall, and still alive, we

show the "fall" animation.

The jumping logic looks like this:

elif velocity.y < 0 and jump_count == 0 && hearts > 0:

 animations.play("jump")

This condition checks whether the player is jumping upward (velocity.y < 0) and it’s their first

jump (jump_count == 0), which triggers the "jump" animation.

Here’s the check for double jumping:

elif !is_on_floor() and jump_count > 0 and !is_wall_sliding:

 animations.play("double_jump")

If the player is in the air (not on the floor), has used at least one jump, and isn’t sliding on a wall,

we show the "double_jump" animation.

This handles wall sliding on the right:

elif is_wall_sliding and Input.is_action_pressed("ui_right"):

 animations.flip_h = false

 animations.play("wall_slide")

If the player is sliding on a wall and holding the right movement key, we play the "wall_slide"

animation and face the sprite to the right.

And, finally, this is what we use for wall sliding (left):

elif is_wall_sliding and Input.is_action_pressed("ui_left"):

 animations.flip_h = true animations.play("wall_slide")

It is the same as for wall sliding (right), but for the left side.

Everything is working almost as we want it to. However, you will notice that the player gets stuck

in the hit animation, and that is because there is no event that sets the isHit variable back to

false. The final step is to return to the Mushroom scene, select the HurtPlayerZone node, se-

lect the Node tab, then the Signals tab, and connect the body_exited() signal. Code the signal

function as shown here:

func _on_hurt_player_zone_body_exited(body: Node2D):

 if body.is_in_group("Player"):

 body.isHit = false

Adding Game Juice262

To be consistent, we should also call the isHit function from the Mushroom script:

func _on_hurt_player_zone_body_entered(body):

 if "Player" in body.name:

 body.hurt()

 body.isHit = true

The preceding code ensures that if the body that exited the HurtPlayerZone Area2D node is part

of the group called "Player", the hit variable is reset to false. This means that when the player

stops colliding with the Mushroom, the hit animation will also stop.

Now, everything is in place to provide satisfying visual feedback to the user when they are playing

the game to alert them that they are in danger.

Our next step is to add a fun visual effect to the checkpoint flag. We will fire off a confetti cannon

as a small celebration of finishing the level.

Creating a confetti cannon effect
To reinforce the feeling of achievement and as an extra reward for completing the level, when

the player touches the checkpoint flag, we will fire some multi-colored confetti from the flagpole.

This will take the form of a particle effect, which we will set up as its own scene. Let’s get started!

We’ll begin by creating a new scene with Node2D as the root node. Rename the node to

Confetti_Cannon, add a GPUParticles2D node as a child, and rename this to Blue, as this will

represent the blue confetti. This is shown in Figure 10.9 as follows:

Figure 10.9 – The Confetti_Cannon node and confetti particles

Chapter 10 263

Now, select the Blue confetti particles node. In Inspector, find the setting for Process Material

and then add New ParticleProcessMaterial, as shown in Figure 10.10:

Figure 10.10 – Creating a new particle process material

Next, click on ParticleProcessMaterial (the word) to expand the menu of settings for the particle.

The confetti should spin (rotate) as it flies, but it shouldn’t move away from the player. Enable

Rotate Y and Disable Z in the Particle Flags settings, as shown in Figure 10.11:

Figure 10.11 – Particle Flags settings

Adding Game Juice264

The confetti should move in an arc to mimic the way confetti behaves in real life. To achieve this,

adjust the angle at which the confetti spawns. You can adjust the numbers to suit yourself—I

have set the minimum angle to 209 and the maximum to 327, as shown in Figure 10.12:

Figure 10.12 – Setting the min and max spawn angles for the confetti

Make sure to set the Direction variables as x = 0.0, y = -1.0, and z = 0.0, as shown in Figure 10.13.

The confetti particles should also spread out, and not all head off on the same path. To spread

them out along a range of angles, I chose a Spread value of 100, which will pick an angle between

–100 and 100 degrees for each new particle.

Additionally, since confetti is usually an explosive event, we want to vary the Initial Velocity

values of the particles. Both changes are shown in Figure 10.13:

Figure 10.13 – Varying the Spread and Initial Velocity settings of the confetti particles

Chapter 10 265

To make the effect even more impressive, we can change the rate at which each particle spins as

it moves through the level. This can be done by varying the Angular Velocity values. I’ve locked

the rate at 280, as shown in Figure 10.14:

Figure 10.14 – Setting the variable rate of angular velocity for the particles

The confetti should also accelerate away from the center at a steady rate, and we can easily set

this in the linear acceleration setting (that is, Linear Accel) as shown in Figure 10.15:

Figure 10.15 – Setting the linear acceleration for the particles

To prevent the confetti from getting too far away from the flag, we should increase Gravity in the

Accelerations section, as shown in Figure 10.16:

Figure 10.16 – Increasing the gravity in the y direction for the particles

Adding Game Juice266

To control what the confetti particles look like, we head to the Display properties of

ParticlesProcessMaterial. Now, vary the Scale values of the confetti particles—I have set the

minimum size to 5 and the maximum to 20. For Color, I chose sky blue. These changes can be

seen in Figure 10.17:

Figure 10.17 – Setting the scale variety and the color for the particles

The next step is to control how long these particles remain on screen and how they behave while

they are alive. The settings for this can be found in the Time property. The default lifetime is 1

second, which is fine; however, we must turn on One Shot so that the confetti only fires once

and does not keep spawning. You can vary Explosiveness and Randomness, or use the values

shown in Figure 10.18:

Figure 10.18 – Adjusting the Time properties for the particles

Chapter 10 267

The final step is to head to the Drawing property and tick the box to use Local Coords. This just

ensures that the particles follow their own path and not the path of any parent nodes to which

they may be attached. It keeps the particles in the place where we put them in the scene. This is

shown in Figure 10.19 as follows:

Figure 10.19 – Setting the particles to use local coordinates in the Drawing property

To preview this confetti particle effect, scroll up to the very top of the Inspector and turn on the

Emitting checkbox. Each time you check it, you should see the blue confetti particles fire in the

scene, as shown in Figure 10.20:

Figure 10.20 – Turning Emitting on fires the particles

We now have a scene for a sky-blue confetti particle, but a confetti cannon should shoot a rainbow

of colored particles into the sky.

Adding Game Juice268

To achieve this, duplicate the blue particle, then right-click on ParticleProcessMaterial and choose

Make Unique, then change the color under the Display properties (as we did in Figure 10.17) and

rename the particle node to match. This is shown in Figure 10.21:

Figure 10.21 – The confetti cannon scene tree

Note that not all the confetti particles are emitting. We’ll fix this in the next section.

Scripting the confetti cannon
To ensure that all the confetti particles fire at the right time, we attach a script to the Confet-

ti_Cannon node and define a fire() function as follows.

extends Node2D

func fire():

 $Blue.emitting = true

 $Orange.emitting = true

 $Green.emitting = true

 $Yellow.emitting = true

 $Red.emitting = true

 $Pink.emitting = true

This fire() function turns on all the confetti particle emitters at once by setting their emitting

property to true. Each line targets a different colored particle node—Blue, Orange, Green, Yellow,

Red, and Pink—and activates them simultaneously. This creates the effect of a celebratory burst

of colorful confetti when the fire() function is called.

By keeping all the emitters inside the Confetti_Cannon node and triggering them through this

one function, we keep our code organized and make it easy to fire all the confetti with a single

command.

Chapter 10 269

Recall that the cannon fires confetti as a small visual reward for the player when they complete

the level and touch the checkpoint flag. It makes sense, then, that the cannon should be attached

to the checkpoint. We can do this quite easily in Godot by dragging the confetti_cannon.tscn

file into the scene tree of the CheckPoint scene, as shown in Figure 10.22:

Figure 10.22 – Adding the confetti cannon to the CheckPoint scene

Once the confetti cannon is part of the CheckPoint scene, we will need to add some code to

check_point.gd to call the fire method once the level is complete.

Adding Game Juice270

Click on the CheckPoint (Area2D) node to select it in the scene tree. Now, click on the Node tab

and then the Signals tab. Connect the on_body_entered() signal and code it as follows:

func _on_body_entered(body):

 if level_complete:

 $Confetti_Cannon.fire()

The preceding code is called when the _on_body_entered() signal is received. This means that the

player has collided with the checkpoint flag. Then, if the level_complete Boolean is set to true,

the fire() method of the confetti cannon is called. The fire() method then sets the emitting

property of all of the confetti in the cannon to true.

With everything now in place, when you complete the level and touch the checkpoint flag, you

will be rewarded with a delightful burst of confetti.

In the final section, we will learn how to add sound effects and audio to our levels to add another

layer of polish and atmosphere.

Adding audio and sound effects
Sound is a powerful tool in game development, shaping the player’s experience in ways that

visuals alone cannot. A well-crafted soundtrack sets the mood, whether it’s a fast-paced action

sequence or a calm exploration scene. Along with this, sound effects provide immediate feedback

for player actions, making the game world feel more alive and responsive.

In this section, we’ll explore how to enhance our game’s feel with audio. We’ll add background

music to create an atmosphere and introduce sound effects for key interactions, such as collecting

items, taking damage, or completing a level. By the end of this section, you’ll understand how to

implement and fine-tune audio to make your game more immersive and engaging.

So, let’s make the level more enjoyable by adding some entertaining background music. A good

resource for royalty-free music is Incompetech:

https://incompetech.com/music/royalty-free/music.html

I have chosen the track Adventures in Adventureland by Kevin MacLeod from this website. The

track is licensed under Creative Commons: By Attribution 4.0 license (http://creativecommons.

org/licenses/by/4.0/).

https://incompetech.com/music/royalty-free/music.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 10 271

Let’s begin by making a new sub-folder in the Assets folder called Audio and drag and drop the

Adventures in Adventureland.mp3 file into it, as shown in Figure 10.23:

Figure 10.23 – Adding background music to our audio folder

To play audio, Godot has a special node called AudioStreamPlayer. It is ideal for playing back-

ground music as it does not play audio positionally. If you want audio to play from different

sources on the screen, then you use the AudioStreamPlayer2D or AudioStreamPlayer3D node.

Since the level will have background music, add a new AudioStreamPlayer node to the level

scene, as shown in Figure 10.24:

Figure 10.24 – Adding an AudioSteamPlayer node to the level scene

With AudioStreamPlayer selected, look at its properties in Inspector. Here, the Stream property

is the audio source that it will play. Drag and drop the MP3 file into Stream. Lower the volume to

–20 dB and set Autoplay to On. All these changes are reflected in Figure 10.25:

Adding Game Juice272

Figure 10.25 – Setting up the stream for our audio player

Because Autoplay is set to true, the track will begin playing as soon as the level loads. If you

want to stop the music, all these settings can be changed from the script attached to the level,

and playing can be set to false.

Now that we’ve got background music up and running, let’s move on to adding sound effects to

the game.

Implementing a sound effect
Sound effects do not play automatically and continuously. Instead, they are triggered by or paired

with an event. A good example of this is when the player jumps or collects something.

First, you will need to download a sound effect of your choice. You can visit Open Game Art

(https://opengameart.org/) and search for a jump sound and a coin or collectible sound. This

website is an excellent resource for free game assets, all made available under a Creative Com-

mons CC0 license.

Once you have a suitable jump sound and a collection sound, add your files to the Audio folder

in the Godot FileSystem. This is shown in Figure 10.26:

Figure 10.26 – Adding sound effects to our Audio folder

https://opengameart.org/

Chapter 10 273

Since things are simple in our game and we only have two sound effects, one for jumping and one

for collecting, we will add two AudioStreamPlayer nodes to the Player scene to handle this. Rename

the AudioStreamPlayer nodes to reflect the sound effect they will play, as shown in Figure 10.27:

Figure 10.27 – Adding multiple audio streams to the Player scene

For more complex games with multiple overlapping sound effects, adding multiple AudioStream

nodes is not the optimal solution, and you would consider a Sound Manager scene or setting up

some audio buses for music and sound effects.

Each AudioStreamPlayer node should play the associated sound effect, so make sure that you

drag the correct file to each Stream, as shown in Figure 10.28:

Figure 10.28 – Two audio streams for the two different sound effects

Adding Game Juice274

With the two audio streams set up with the right sounds and the default settings, open the player.

gd script and add two references to the AudioStreamPlayer nodes as onready variables. You can

do this by dragging the nodes into the script and then, before releasing them, holding Ctrl. This

code is shown as follows:

extends CharacterBody2D

@onready var animations = $AnimatedSprite2D

@onready var jump = $Jump

@onready var collect = $Collect

Now that a reference to each of the nodes is available, we can find the right point to trigger the

stream to play. Jumping should be triggered when the player presses the jump key.

In the standard_player_movement() function, the jump is handled through a specific if statement.

Just after the condition that checks whether the spacebar is pressed and the player is on the floor,

call the play() function of the jump AudioStreamPlayer node, as shown here:

func handle_jump():

 # Handle jump.

 if Input.is_action_just_pressed("ui_accept") and is_on_floor():

 jump.play()

This code will ensure that each time the player is on the floor and presses the jump key, the jump

sound effect will also play.

Moving on to the collection sound effect, it should play whenever the player collides with a

Strawberry. Fortunately, we already have a function in the Player script that is called when this

happens: add_score(amount). Recall that this function is called whenever a player collides with

a Strawberry to keep track of how many Strawberries have been collected. We can call the sound

effect to play when this method is called, as shown in the code here:

func add_score(amount):

 collect.play()

 strawberry_count += 1

The preceding code is called whenever the player collects a Strawberry in the level. It plays the

collection sound effect and adds one Strawberry to the count of Strawberries collected.

With just a single line of code, we’ve added satisfying audio feedback to the Strawberry collection,

helping to make the moment feel more rewarding for the player.

Chapter 10 275

Summary
Game development isn’t just about mechanics and level design—it’s also about how the game

feels to play. In this chapter, we explored the concept of game juice and how small enhancements

can make a game more engaging, polished, and satisfying.

We implemented several key elements to improve player feedback and immersion. First, we in-

troduced a health bar HUD using hearts that gray out as the player loses health, providing clear

and intuitive feedback on player status. To further enhance responsiveness, we integrated hit

animations to make taking damage feel impactful.

Next, we added a confetti cannon effect at the checkpoint to celebrate level completion, reinforcing

player achievement with a burst of visual excitement. Finally, we brought the level to life with

background music and sound effects, making the game world more immersive and dynamic.

By applying these techniques, we’ve demonstrated how small visual and audio improvements

can dramatically enhance the player’s experience. Game juice transforms a basic game into one

that feels polished, responsive, and fun to play, helping to keep players engaged and invested in

the game world.

In the next chapter, we’ll take a step back from hands-on coding to explore the bigger picture of

game development: game design. Now that you’ve experienced how small touches can enhance

gameplay through polish and feedback, it’s time to understand how those elements fit into a

well-planned design. You’ll learn how to structure your ideas, define gameplay mechanics, and

shape the player’s experience through thoughtful planning. This foundation will help you make

better design choices and avoid costly rework as your projects grow in scope.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/godot-4-game-dev

https://packt.link/godot-4-game-dev

11
Understanding Game Design

Until now, the focus of this book has been to provide hands-on and practical guidance on how to

develop a game in Godot. However, games are rarely made by opening a game engine and creating

something with no plans. Game design is the first step in game development. It is the blueprint

for crafting enjoyable, engaging, and memorable games.

This chapter will explore how game design acts as a guiding force, shaping gameplay mechanics,

narrative structure, and player experiences.

In this chapter, we’re going to cover the following main topics:

•	 Understanding the foundations of game design

•	 Exploring the game design document

•	 Detailing the key elements of the GDD

By the end of this chapter, you’ll understand the value of thoughtful game design in streamlining

development, reducing costly errors, and improving player satisfaction. Whether you aspire to

design your own games or work effectively as part of a development team, these lessons will

equip you with a clearer perspective on how great games are made.

Technical requirements
No prior experience or knowledge of game design is required.

Understanding Game Design278

Understanding the foundations of game design
Games are a form of entertainment, and successful games are often described as fun. But what

does that actually mean? What elements come together to create a fun, rewarding experience?

These are the questions that game design seeks to answer.

Hyper-realistic visuals and optimized programming alone don’t guarantee that a game will be

enjoyable. In fact, some of the most beloved games succeed not because of how they look or

how technically advanced they are, but because of how they make the players feel. A game that

is engaging, satisfying, and memorable—regardless of graphics or performance—is a product

of thoughtful game design.

Let’s look at some examples:

•	 Stardew Valley (initially released in 2016): This indie farming simulator became a global

hit not because of cutting-edge graphics but because of its satisfying gameplay loop, sense

of progression, and meaningful interactions with characters. Its game design focuses on

player choice, routine, and community-building—all of which contribute to a deeply

engaging experience.

•	 Celeste (initially released in 2018): Celeste is a challenging 2D platformer that combines

tight controls with emotionally resonant storytelling. The design encourages persever-

ance, rewarding players for mastering difficult sections, while also offering accessibility

options that respect different skill levels. It’s a perfect example of how game design can

support both gameplay and emotional impact.

•	 Among Us (initially released in 2018): This social deduction game exploded in popularity

thanks to its clever design that encourages communication, deception, and collaboration.

Despite its simple art style, the core loop—figuring out who the impostor is—keeps play-

ers engaged and coming back.

These examples show that great game design doesn’t always mean complexity or realism. Instead,

it means creating systems and experiences that connect with players.

It is during the design process that these experiences are crafted, and it’s important to be as

detailed and thoughtful as possible. After all, you’re laying out the foundation on which your

entire game will be built.

Chapter 11 279

Game design might feel more abstract than programming, and that’s because it leans toward

the arts and storytelling. As you’ve already experienced, making a game is difficult; there are

many moving parts that all need to work together. Game design may be even more challenging

because there’s no strict formula for success. Unlike programming, there are no hard rules—just

principles, patterns, and a deep understanding of what players find meaningful and enjoyable.

Introducing the game design document
There are some established frameworks for documenting your design. Once you have an idea for a

game, capturing it using these industry-accepted frameworks, such as a game design document

(GDD) or a feature checklist, will help you develop your idea more clearly and get you closer to

game design gold.

When working in Godot, having a solid design plan can make a huge difference. For example,

clearly defining your game mechanics early on allows you to decide what nodes, scripts, and scenes

you’ll need. If your design includes character upgrades, level transitions, or specific interactions,

you can structure your Godot project with that in mind from the start.

Linking your design decisions directly to Godot’s scene system, input handling, and scripting

with GDScript will help you avoid guesswork and rework and build a game that’s not only fun

but also cleanly built and easier to maintain.

In the next section, we’ll look at how to document your game design effectively. This is a crucial

step that helps you turn your ideas into clear, actionable plans and ensures your development

process in Godot stays focused, efficient, and aligned with your original vision.

Why is documentation necessary for your game design?
You might think that because the game you’re making is small, or since you’re the only person

working on it, there’s no real need to write anything down. However, this might be a short-sight-

ed decision. Even the simplest game projects benefit from clear documentation—it helps you

stay organized, think through your ideas more thoroughly, and avoid costly missteps later in

development.

It is essential to document your design so that you—and anyone else working on the game—un-

derstand everything about the game and what needs to be done to finish it. Games are complex and

have many interactive features. Often, you only figure out how to solve a problem while solving

it. A few months down the line, you might not even remember why something was included or

how it works. That’s where documentation becomes invaluable.

Understanding Game Design280

Developing documentation for your game design is especially helpful when working in Godot,

as it allows you to plan the structure of your game more efficiently, deciding what nodes you’ll

need, how different objects will interact, and how to organize your scripts in GDScript. This up-

front clarity reduces the risk of confusion or messy rewrites and helps you stay focused as your

project grows in complexity.

Creating a GDD helps you do the following:

•	 Reduce rework and avoid duplicating effort by clearly outlining decisions already made

•	 Remember the why behind your design choices when returning to your project after a break

•	 Track changes and ideas throughout the development process

•	 Identify interdependencies between mechanics, features, and systems

•	 Stay consistent with your vision and scope

•	 Make collaboration easier if you ever bring in additional team members or contributors

Your game design documents do two important jobs: they look back to capture all the decisions

you’ve made so far, and they look forward, guiding the game’s development. They serve as both

a record of your thinking and a roadmap for building your game.

Therefore, your GDD becomes your project’s single source of truth, keeping you grounded, focused,

and efficient throughout development.

Understanding the guiding principles for the GDD
Firstly, it is important to note that GDDs are living documents. This means that they can change

often, and they should be continually looked at and referred to during the development of the

game. This is because, although the core idea of the game may not change, many elements around

it should evolve, and the documentation should reflect that through adaptation.

Additional reading

You can see how commercial games were made by reading their GDD on Gamescrye

and Roobyx’s GitHub repositories:

•	 https://gamescrye.com/resources/game-design-documents/

•	 https://github.com/Roobyx/awesome-game-design

https://gamescrye.com/resources/game-design-documents/
https://github.com/Roobyx/awesome-game-design

Chapter 11 281

To prepare the GDD, any good collaborative documentation and design software, such as Notion

(https://www.notion.com/), Obsidian (https://obsidian.md/), or OneNote (https://www.

OneNote.com), will work well here. However, there are also solutions tailored to the game devel-

opment industry, such as CodeDecks (https://www.codecks.io/) and HacknPlan (https://

hacknplan.com/).

To make your game design documentation truly effective, it should follow a few best practices.

These principles will help ensure your ideas are communicated clearly and can actually be used

to guide development. Let’s look at these in the subsequent sections.

Think visually
Use a mix of text, systems diagrams, flowcharts, wireframes, and other visuals to communicate

your ideas. Visuals act as a universal language that transcends barriers, making complex concepts

easier to grasp. They improve communication and make ideas more accessible, actionable, and

adaptable for everyone involved.

Keep it brief and clear
Clarity and brevity are key. Your document should be the following:

•	 Short and to the point: Use bullet points to convey ideas efficiently

•	 Accurate: Be specific—include exact values for things such as speed or jump height, and

always write in the present tense

•	 Prioritized: Make it clear which features are essential for your minimum viable product

(MVP), which are nice-to-have, and which are purely optional

Stay organized
A well-organized document is far more usable. Best practices include the following:

•	 Use a web-based format: This makes it easy to access and update, and allows for sections

to be broken into separate, focused pages

•	 Structure information logically: Start with general overviews and move on to specific

details only as needed

https://www.notion.com/
https://obsidian.md/
https://www.OneNote.com
https://www.OneNote.com
https://www.codecks.io/
https://hacknplan.com/
https://hacknplan.com/

Understanding Game Design282

Learn by example
There is not a single correct way to write a design document. A helpful way to get started is to study

examples from real-world games. The Game Docs website (https://gamedocs.org/documents/)

offers a curated collection of design documents from commercial releases. Explore these to see

how others structure their ideas and adapt what works for your own project.

Now that you understand the key principles behind effective documentation, let’s take a closer

look at what goes into creating a GDD.

Exploring the Game Design Document
By now, we know that the GDD is a highly descriptive, living software design document for a video

game. For developers using Godot (or any game engine), a well-prepared GDD helps streamline

the development process by clearly outlining gameplay systems, scene structures, and script logic,

making it easier to translate ideas into Godot’s node-based architecture and GDScript.

The first page or home page of the GDD should be a high-level overview of the game concept,

which would give you the main idea behind the game. This is also sometimes referred to as a pitch

document. In the following sections, we’ll look at the sections to include on this page.

Title: what will you call your game?
The title is often a working title, which is subject to change as the game evolves. The title should

represent the main idea of the game, so it is worth spending some time thinking about this.

As an example, our working title could be SILENT STATION. Let’s develop this in the following

subsections.

Team: who will build or develop the game?
List the people working on the game and what exactly they are responsible for. Don’t worry about

designations; concentrate on exactly which aspects of the project they will make functional.

Status: what is the status of the project?
This is best described using a traffic light system or a kanban board. Create color-themed head-

ings: TO DO (yellow), DOING (orange), DONE (green), and BLOCKED (red). List the features of

the game under each of these headings. Anything blocking the progress of the game or any major

issues should fall under the red category. An example of this is shown in Figure 11.1:

https://gamedocs.org/documents/

Chapter 11 283

Figure 11.1 – An example of a simple Kanban board for development tasks

Statement of concept: what is your game about in one
sentence?
Describe the core features of your game in a single sentence. Try to include the setting, main char-

acter, primary objective, and obstacles to overcome.

Here is an example from SILENT STATION:

A lonely astronaut must navigate a derelict alien space station (setting) using only a flashlight to find

missing crewmates (objective) while avoiding hostile creatures that react to sound (obstacles).

Expanded concept paragraph and USP: what makes your
game unique, and how can you describe it in more detail?
In this section, we expand on the statement of concept and describe the gameplay. Keep in mind

that this is a paragraph that briefly expands on the core loop and progression of the player. High-

light the games’ unique selling points (USPs), which are sometimes called the hook—this is

what will keep the player invested.

Understanding Game Design284

Here is an example from SILENT STATION:

The player must explore pitch-dark, claustrophobic corridors with only a limited beam of light, manag-

ing both visibility and sound. The game’s unique mechanic is its sound-reactive enemies combined with

real-time voice input that can attract danger, making the microphone part of the gameplay loop.

Genre: what type of game are you making?
These are categories of video games that share similar gameplay characteristics. While sin-

gle-genre games still exist, it’s likely that these markets are oversaturated, and you will have

more success in mashing together multiple genres to create new gameplay styles and mechanics.

Here is an example from SILENT STATION:

Survival horror with light puzzle-solving and exploration elements.

Audience: who is this game for?
This is the market you are targeting. Here, you might list the age range and the Entertainment

Software Rating Board (ESRB) rating. You will look at the types of games this audience plays and

perhaps even link to a more detailed page of player profiles and how the game will appeal to them.

Here is an example from SILENT STATION:

Mature players (ESRB 16+) who enjoy narrative-driven sci-fi horror games such as Alien: Isolation or

Dead Space.

Experience: what should the player feel or experience while
playing?
What will the player’s experience in the game be? How will the game make them feel? How long

does the experience last? This heading can link to a detailed page on player progression and ob-

jectives, and the details can be revealed there.

Here is an example from SILENT STATION:

The game is designed to create a sense of dread and tension, with brief moments of relief. It encourages

slow exploration, attention to audio cues, and emotional connection through rescuing survivors.

Chapter 11 285

Anchor points: what are the core ideas, inspirations, or
reference points?
These are experiences in the game that tie the players to the character, invest them in the story,

and keep them playing. These could be opening scenes, important boss battles, or major item

discoveries that unlock narrative development. Highlighting some of these here and then linking

to a page that gives more detail of the story arc is key here.

Here is an example from SILENT STATION:

•	 The initial moment the astronaut loses contact with base

•	 Discovering the first survivor in a cryo pod

•	 First encounter with a sound-reactive enemy

•	 Turning on the power to an entire sector using a stealth route

Platform: which platforms will the game be released on?
This is the platform you are targeting. It could be PC, mobile, or console. It could be one or all of

them or something else entirely. Usually, you will narrow your scope and focus on a single platform.

Here is an example from SILENT STATION:

PC (initial), with future potential for console.

Review competition: what similar games exist, and how will
yours stand out?
List some games that are similar or even directly competing with yours. Then, link to a page on

which you analyze the competition in depth. Highlight what sets your game apart.

Here is an example from SILENT STATION:

Like Alien: Isolation and Observation, but differentiates with unique microphone input and sound as a

core mechanic.

Assets: what art, sound, and other resources will your game
need?
You might include some concept art that establishes the general tone of the game and link to a

more detailed document that lists all the known sound and image assets needed for the game.

This would include the interface, animations, world, and characters in detail.

Understanding Game Design286

Here is an example from SILENT STATION:

•	 Audio: environmental ambience, voice lines, creature sounds

•	 Visuals: modular sci-fi interior tileset, dynamic lighting assets

•	 UI: oxygen meter, flashlight battery icon, sound detection meter

Monetization: how will the game generate revenue, if at all?
Here, you explain how the game will generate revenue. It might be that the game is a one-time

purchase or is free-to-play, or has in-game purchases. Whatever the case may be, it needs to be

expanded on the linked page on the systems and features.

Using these as the main headings on the first page of your GDD and linking them to other pages

in the GDD, which contain further detail, will provide a great overview of the concept for your

game and give everyone reading it a clear idea of what type of game this is and who it is aimed at.

The next step in the design process would be to focus on the key elements of the game that now

require more detail.

Here is an example from SILENT STATION:

Premium model – one-time purchase. Future DLC (Downloadable Content) could add new storylines

or challenge modes.

Describing game elements of the GDD in detail
This section will highlight the parts of the GDD that require more detail. The reason these sec-

tions need so much detail is that they are the fundamental elements without which there would

be no game.

Therefore, you and other team members need to have a very clear idea of what is going into the

game and how it works and affects other systems in the game. Use the guidance in the subsequent

sections to add as much detail as possible to your game idea. Note that each heading represents

a new page or pages in the GDD.

Player progression and objectives
In this section, you should answer the following questions about the player:

•	 Who are they?

•	 What do they know?

•	 What is their narrative arc?

Chapter 11 287

•	 What are their goals?

•	 How do they progress?

•	 What is the core loop?

•	 What is the outer loop?

The Player progression and objectives page links to anchor points on the main page. As a web-based

document, this would typically be a hyperlink, but these points also connect conceptually, guiding

how the game unfolds over time.

To define progression clearly, it’s helpful to break it down into two layers:

•	 Core gameplay loop: The core gameplay loop represents the fundamental actions the

player repeats to play the game. For example, in a platformer, this might involve running

and jumping to traverse a level, attacking enemies, and avoiding hazards.

•	 Outer loop: The outer loop, on the other hand, describes the broader progression system—

how players are rewarded for engaging with the core loop. This could include unlocking

new levels, gaining upgrades, or progressing through a story.

The core loop should feed into the outer loop, and vice versa, creating a satisfying and reinforcing

gameplay experience.

Here is an example from SILENT STATION:

Player Progression & Objectives:

•	 Start: Wake up in medical bay

•	 Mid-game: Repair communication array

•	 Late-game: Evacuate remaining crew

•	 Core loop: Explore → Find tools → Avoid noise → Progress

•	 Outer loop: Unlock new zones, backtrack with new tools, piece together story

Game world and background
In this section, you should answer questions about the world:

•	 World lore: Is there a back story that sets the scene for the game?

•	 World physics: Can you run, fly, fall, float, and so on?

•	 World points: How does the player progress through the game, locations, and so on?

•	 Easter eggs: Do you have any hidden surprises for the player to find?

Understanding Game Design288

This page can link to a new document on world fiction if required.

Here is an example from SILENT STATION:

Game World and Background:

•	 Space station lore: abandoned research facility on a rogue moon

•	 Gravity and oxygen are managed room by room

•	 Hints at secret government experiments via environmental storytelling

The overworld map shown in Figure 11.2 is an example of how a game’s world can be visually

represented, helping to convey the structure, scale, and key locations within your game’s setting:

Figure 11.2 – The overworld (Credit: https://kenney.nl/)

This map gives a bird’s-eye view of the game world, showing how different areas are connected

and where key events or challenges might occur. Including visuals like this in your GDD helps

both you and your team stay aligned with the spatial layout and narrative flow of the game.

User interface
This section should detail all the ways in which the player interacts with the game world and

receives information about the world and their own status. Also, be sure to focus on the look and

feel. You should answer these questions:

•	 What is the control scheme?

•	 What is required to move from one screen to the next? (Consider providing wireframes.)

https://kenney.nl/

Chapter 11 289

•	 What help or hint system do you provide, and what does it look like?

•	 How do you present the controls on screen?

•	 What does the Options menu look like?

•	 What does the Pause menu look like?

Here is an example from SILENT STATION:

Minimal UI, primarily diegetic (flashlight glow, sound bars integrated into helmet visor)

Figure 11.3 shows a UI mock-up demonstrating elements, such as buttons and sliders:

Figure 11.3 – A UI mockup (Credit: https://kenney.nl/)

Understanding Game Design290

Audio and visual style
This page provides details on the atmosphere and ambience of the game. It should clearly define

how the game should look and sound. This all contributes to the overall mood of the game, and

you should answer questions such as the following:

•	 What is the color palette?

•	 What is the musical style?

•	 What is the art style?

•	 Include references, examples, and concept art

•	 Give an idea of the environment, characters, enemies, objects, and so on

This page should link to your complete game asset list.

Here is an example from SILENT STATION:

•	 Art style: stylized realism

•	 Sound: layered ambient tones, positional audio, player breathing

Figure 11.4 shows an example of a color palette. For more examples, check out Lospec (https://

lospec.com/).

Figure 11.4 – An example of a color palette

https://lospec.com/
https://lospec.com/

Chapter 11 291

Game systems and features
Games are never really finished—there’s always the temptation to add new, cool features that

could make the game even better. So, how do you decide which features to include in this section?

The answer is to list all systems and features required for either an MVP or a vertical slice of the

game to be playable:

•	 An MVP is the simplest version of your game that includes just enough core features to

be functional and testable. It’s what you would show to get initial feedback or confirm

that the basic concept works.

•	 A vertical slice is a small, fully polished portion of the game that represents the final look,

feel, and gameplay. It’s typically used to showcase the game to others, such as in a pitch

or trailer, and helps clarify the quality and scope of the finished product.

Essentially, you are listing critical components without which the game would not be playable.

Consider answering these questions:

•	 Why is this feature required?

•	 How does this feature interact with any other features?

•	 How does each feature contribute to gameplay?

•	 How does each feature contribute to monetization or not?

Here is an example from SILENT STATION:

Flashlight system:

•	 Why required: The flashlight is the player’s only way to navigate the dark environment, creating

tension and visibility control

•	 Feature interaction: Integrates with power management and stealth systems; has limited battery

life, requiring strategic use

•	 Contribution to gameplay: Controls how much the player sees, influences exploration, pacing,

and adds vulnerability

•	 Contribution to monetization: Not directly, but critical for the emotional tone and market appeal

Understanding Game Design292

Figure 11.5 illustrates how individual systems and features in a game function like building blocks.

Each block represents a different system, such as movement, physics, UI, or level design. On their

own, these systems may seem simple, but when carefully connected, they support and enhance

each other to create a cohesive, engaging experience.

Figure 11.5 – How systems and features work together to create a bigger experience

(Credit: https://kenney.nl/)

Just like in Figure 11.5, it’s the combination and interaction of these blocks that form the full

structure of a game.

Software requirements
This section should be dedicated to listing the software tools required to develop the game and

the assets, too, if necessary. It should also outline the purpose of each tool. You should answer

these questions:

•	 What game engine will be used?

•	 What will be used for world creation and level design?

Chapter 11 293

•	 What will be used for dialogue trees and narrative structure?

•	 What will be used for mission and quest design?

•	 What other tools are needed for the development of the game?

Here is an example from SILENT STATION:

•	 Godot 4 for the game engine

•	 Blender for modeling

•	 Reaper for sound editing

Figure 11.6 shows a screenshot of the Godot engine interface:

Figure 11.6 – The Godot engine interface

Understanding Game Design294

Game objects
This page should list the details of all the objects defined in your game. You should list the details

of these elements, including the following:

•	 All non-player characters (NPCs) and enemies

•	 The story regarding NPCs and enemies

•	 Dialogue of NPCs and enemies, including links to dialogue files

•	 All NPC and enemy properties, such as abilities, special attacks, and so on

•	 All the attributes and values of other game objects, such as moving platforms, and so on

•	 All the functions, methods, or behaviors of the game objects

•	 This page should link to the asset list page

•	 This page should link to the asset attribute and property list page

Here is an example from SILENT STATION:

•	 Enemies: “Echo Wraiths” – blind but highly reactive to sound

•	 Survivors: Have dialogue trees and scripted events

Quick tip: Need to see a high-resolution version of this image? Open this book

in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader and a free PDF/ePub copy of this book are included

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use

the search bar to find this book by name. Double-check the edition shown to

make sure you get the right one.

http://packtpub.com/unlock

Chapter 11 295

Figure 11.7 demonstrates the assets linking to the world map:

Figure 11.7 – Assets linking to the game world map (Credit: https://kenney.nl/)

Detailed asset list
This is the page on which your design documents should be linked. It could be a spreadsheet

that is continually updated as it contains the entire asset list, which defines each object and its

properties. This would include every object: all text, graphics, and audio content used in the game.

You should start this list as soon as you begin prototyping and testing gameplay. This is because

the number of assets you need will give you a good indication of the scope of the game and an

estimate of how long it will take to make. If you do not create an asset list and keep it updated, it

will be very hard to keep track of the game development.

Understanding Game Design296

Here is an example from SILENT STATION:

You would link to the spreadsheet showing model names, file types, poly count, and usage tags

Figure 11.8 – It is essential to keep a list of all assets in the game (Credit: https://kenney.nl/)

Prototypes
Often, you will want to test ideas, features, and mechanics. When you develop prototypes to

test these ideas, you should link them to your GDD. Provide as much detail as you can about the

prototype, including the date it was made, the purpose of the prototype, and what it was testing.

You should also include how this changed the design of the game.

Here is an example from SILENT STATION:

•	 Prototype 1: enemy AI sound detection test

•	 Prototype 2: flashlight battery depletion vs. level pacing

Chapter 11 297

Playtesting
While you are developing the game, you will conduct a lot of play tests. This is an essential step in

game development because it is an incremental process. You should have links in your document

to the outcomes of each test you conduct.

The page should contain an overview of the following:

•	 What were you testing?

•	 Why were you testing it?

•	 What did you learn from the test?

•	 How did it affect the development of the game?

Here is an example from SILENT STATION:

Playtest 1 revealed players didn’t understand how sound affected enemy behavior → added subtle audio

tutorial in early level

Figure 11.9 demonstrates the concept of gray boxing, a technique used during early testing phases

of game development. In gray boxing, simple shapes and placeholder graphics are used to build

a level layout before adding final art or assets. This allows developers to focus on testing core

gameplay mechanics such as movement, collision, level flow, and challenge balance without

being distracted by visuals.

Figure 11.9 – Record all the results of every test (Credit: https://kenney.nl/)

Understanding Game Design298

Gray boxing is a vital part of the broader testing and playtesting process, helping teams identify

design issues early, refine the player experience, and ensure the game is fun and functional before

committing to polished visuals.

Archive
Over time, you will try many different ideas and test several different features as you develop

your game. Not all these ideas will work, and so, instead of throwing them out, create an archive

and store them there.

Further down the development road, parts of those ideas and features may be useful. The archive

will also give you a sense of how your design has developed over time, and you can get a good

perspective on just how much progress you have made.

Here is an example from SILENT STATION:

Original idea for two-player co-op archived but may return in expansion

Figure 11.10 – Take ideas from the archive and use them elsewhere in your design (Credit:
https://kenney.nl/)

Current concerns and considerations
Because you will be deliberately limiting your scope, usually to just what is required for an MVP

or vertical slice, many of your ideas and features will not make it to production. However, they

can be marked for a future expansion of the game.

Chapter 11 299

Similarly, you may have concerns about implemented features, and they might not currently be

resolved or working just the way you want them to. You should list these here, and once they

are resolved, you should move them to a new page or section for resolved issues with a detailed

description of what the issue was and how it was resolved.

Here is an example from SILENT STATION:

Uncertainty about microphone support on all platforms

Implementation details
Every feature, system, and mechanic in the game will need documentation that details the tech-

nicalities of its implementation. They should demonstrate in detail exactly how each element

can be achieved by the developers. This is the least design-focused page and instead is develop-

ment-focused. It should answer the following questions:

•	 What algorithms and data structures are required?

•	 How are features such as navigation, resources, and dialogue implemented?

•	 What procedural systems are needed?

•	 How does the game’s economy function?

•	 What network architecture is required?

•	 What hardware is being targeted?

•	 Are there any game cheats for testing purposes?

•	 What is the project folder structure, and what are the file naming conventions?

Here is an example from SILENT STATION:

•	 Sound detection system uses raycasting and dynamic decibel thresholds

•	 Enemies use a state machine switching between patrol, alert, and chase

With the implementation details in place, the design document shifts from conceptual ideas to

practical execution.

This section ensures that developers have a clear blueprint for building the game’s systems ef-

fectively. With the groundwork laid, the next step is to consider how all these elements come

together during production, testing, and iteration.

Understanding Game Design300

Summary
In this chapter, we explored the critical role of game design within game development, with a

specific focus on the structure and purpose of the GDD. We broke down each section of the GDD

in detail, covering everything from the title and team composition to monetization strategies,

game systems, prototypes, and playtesting.

By walking through the key headings—such as the statement of concept, audience, USPs, assets,

player progression, and audio-visual style—we laid out a clear framework for documenting every

important aspect of a game. This structured approach ensures that ideas are well-communicated,

feasible, and aligned with the project’s goals.

Creating a design document, even for a small single-screen game, is not just a formality—it’s an

essential step in bringing your vision to life. It provides a roadmap for development, helping you

stay focused and consistent while also anticipating potential challenges. Additionally, a clear and

well-organized GDD acts as a valuable tool for collaboration, whether you’re working solo or in

a team, ensuring that everyone involved understands the core ideas and direction of the game.

Ultimately, investing time in a GDD streamlines the development process, reduces costly revisions,

and lays the foundation for a polished, engaging player experience. Whether you’re building a

simple game or a complex multi-level adventure, thoughtful design planning is what transforms

creative ideas into a playable reality.

Now that you’ve seen how to plan and document your game in detail, the next chapter will guide

you through what happens after your design is complete. You’ll explore educational resources,

ways to practice your skills, connect with the game development community, find useful tools

and assets, and begin building your portfolio. You’ll also learn how to come up with compelling

game ideas and follow a design process for your future projects.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

12
Where to Next?

Congratulations on reaching the final chapter of Godot 4 for Beginners! You now have a solid

foundation in using the Godot Engine to create games, and you’ve developed practical skills to

bring your ideas to life. But the journey doesn’t end here—this chapter is designed to help you

take the next step in your game development career.

This chapter will introduce you to a variety of resources and opportunities that will support your

continued growth as a developer. From YouTube channels and blogs to game jams and asset

marketplaces, you will discover valuable tools, communities, and experts that can inspire, teach,

and elevate your projects.

In this chapter, we’re going to cover the following main topics:

•	 Utilizing educational resources

•	 Exploring opportunities for practice

•	 Community and networking

•	 Utilizing tools and assets

•	 Building your portfolio

•	 Developing game ideas

•	 Design guide for your next project

By the end of this chapter, you’ll have a curated list of resources to deepen your knowledge, ex-

pand your skills, and connect with other developers. You’ll also have discovered how to stay mo-

tivated, stay informed about the latest trends, and build your presence in the game development

community.

Where to Next?302

Wherever your game development journey takes you next, these resources will be your foundation

for continued learning and success. Let’s explore what is out there!

Technical requirements
No technical setup is needed—just a willingness to explore, experiment, and take the next step

in game development.

Utilizing educational resources
Learning how to develop games in Godot doesn’t stop with a single project or tutorial; it’s an

ongoing process. This section introduces a variety of trusted educational resources, such as You-

Tube channels, blogs, and books, that can help you deepen your knowledge, stay up to date with

the engine’s evolution, and find inspiration from experienced developers.

Whether you prefer watching video tutorials, reading step-by-step guides, or learning from com-

munity insights, these resources will support your journey as you grow your skills and take on

more ambitious game projects.

YouTube
There are many free game development learning resources available on YouTube. Because Godot

itself is open source, the community around the engine has a philosophy of sharing and help-

fulness. There is a belief among the community that we should not gatekeep knowledge and instead

that we all learn more through openness and sharing.

Some of the best Godot game development YouTube channels are the following:

•	 GDQuest (https://www.youtube.com/@Gdquest): Arguably the best resource for learning

how to create games with the Godot Engine, GDQuest is a professional and well-estab-

lished group of Godot educators. This means that you will get the cumulative knowledge

of those highly experienced in the Godot Engine. I have personally used their channel for

the bite-sized explanations of various nodes since they explain everything succinctly and

get straight to the point.

All the material on their YouTube channel is free, and if you respond well to their teaching

style, then it would be wise to explore their paid courses, which I will discuss later in this

chapter.

https://www.youtube.com/@Gdquest

Chapter 12 303

•	 Heartbeast (https://www.youtube.com/@uheartbeast): Another fantastic resource for

anything Godot-related is the YouTube channel Heartbeast. Benjamin was an early adopt-

er of Godot, and his tutorials are some of the most thorough, detailed, and yet beginner

friendly that I have ever seen. He has a great way of explaining why things are done the

way they are, and I highly recommend his channel.

If you are looking for the full experience of creating a game in Godot from start to finish,

with careful and detailed explanation along the way, then Heartbeast is the channel for

you. Benjamin also has paid courses if you want to go beyond the basics discussed on his

YouTube channel.

•	 Godot Tutorials (https://www.youtube.com/@GodotTutorials): If you want to focus

more on coding in the Godot Game Engine, then check out the Godot Tutorials channel.

This channel takes a detailed approach to making games with Godot and includes ele-

ments of game design in its teaching, too. The channel concentrates on coding principles

using GDScript within the Godot Engine, making it a great place to visit for a deeper

understanding of how to implement things in Godot.

The channel has an accompanying website with text-based versions of all the video tu-

torials. I really appreciate this as I learn better from text, so if this is your learning style

too, then check out https://godottutorials.com/.

•	 GameDev Journey (https://www.youtube.com/@GameDevJourney): Finally, if you en-

joyed the way that the materials were presented to you in this book, then you will enjoy

the tutorials on my personal YouTube channel. It also has an accompanying website

with the same tutorials presented in text format, which you can visit at https://www.

gamedevjourney.co.uk/home.

The tutorials are modular and focus on individual game mechanics. Beyond tutorials, there

are also developer diaries, discussions around game assets and resources, and encouraging

videos with advice to keep you motivated.

Now, let’s move on to some blog recommendations.

Blogs
Game development is an area that is always evolving, and there is always more to learn. There are

some amazing blogs online covering game design and the theory behind making games.

https://www.youtube.com/@uheartbeast
https://www.youtube.com/@GodotTutorials
https://godottutorials.com/
https://www.youtube.com/@GameDevJourney
https://www.gamedevjourney.co.uk/home
https://www.gamedevjourney.co.uk/home

Where to Next?304

To stay up to date and remain aware of the current best practices, the following blogs are useful:

•	 Deconstructor of Fun (https://www.deconstructoroffun.com/blog): This blog analyzes

the design of popular, free-to-play games, with a critical eye on what works and what

doesn’t in terms of engagement, retention, and monetization. Written by a team of de-

velopers who also play games extensively, the content is especially valuable for aspiring

game makers who want to understand the balance between fun and profitability. If you’re

planning to build games for a living, this blog offers real-world insights into what makes

games successful in a competitive market.

•	 Game Design Skills (https://gamedesignskills.com/blog/): This blog offers a rich and

steadily growing library of articles focused on the practice of game design, particularly

around how players interact with game systems. It dives deep into mechanics, controls,

progression, and balancing, making it a great resource for aspiring and experienced de-

signers alike. Whether you’re learning the fundamentals or refining your skills, this site

is a valuable place to explore real examples and practical design thinking.

•	 Game Developer (https://www.gamedeveloper.com/): Game Developer is a go-to hub

for anyone working in or studying the games industry. It features detailed postmortems,

developer insights, and behind-the-scenes articles on released games, alongside regular

updates on industry trends and news. Ideal for students, indie devs, and professionals

alike, it’s a place to learn from real-world experiences and stay informed about the evolving

landscape of game development.

Whether you prefer quick insights or in-depth articles, these blogs are a great way to stay current

with evolving design trends and industry practices. For a more structured and comprehensive

approach to learning, see which books are recommended at the end of this chapter in the further

reading section.

Exploring opportunities for practice
In my conversations with many game developers, there is one piece of advice that comes up re-

peatedly: start small when making a game. The benefits of this approach are as follows:

•	 Starting with a small game allows you to learn the core concepts, such as movement, col-

lisions, and basic mechanics, without being overwhelmed by the scope of a larger game.

•	 A smaller project can be completed faster. This gives you the satisfaction of finishing

something and seeing it in action. It also gives you the experience of the process of mak-

ing a game from start to finish, which boosts confidence and motivation. Having a game

that others can play also gives you the chance to get feedback, which you can learn from.

https://www.deconstructoroffun.com/blog
https://gamedesignskills.com/blog/
https://www.gamedeveloper.com/

Chapter 12 305

•	 Having a small game provides a safe space for you to make mistakes and learn from them.

Trial and error is a great way to learn in the beginning. In larger projects, your mistakes

will compound and are difficult to fix.

•	 When you work on smaller games, you get the chance to develop essential problem-solving

skills without needing to balance multiple systems at once.

•	 Making many small games lets you build a portfolio gradually. A collection of small but

polished projects is better than having many rough and unfinished large projects. This is

a good way to showcase your work.

•	 Once you have completed some smaller games, you will have a better understanding of

game development workflows and will have laid a foundation for yourself to undertake

more ambitious projects.

A great way to practice your skills is to take part in game jams. We’ll discuss this in the next section.

Participating in game jams
Game jams are time-limited events in which individuals or teams create a game from beginning

to end based on a given theme and set of constraints. They usually last anywhere from 48 hours

to a week and are open to participants of all skill levels.

For beginners, game jams are a fantastic way of getting hands-on experience. You’ll have the

chance to practice everything from designing mechanics to writing code, creating art, and com-

posing sound—all in a short burst of focused creativity. Don’t worry if you’re not confident in

every area—game jams often attract a wide range of people, and many participants team up and

learn from each other.

Additionally, you’ll also experience the full game development cycle: brainstorming, prototyping,

testing, and finishing a playable project. This can be a huge confidence boost and a great portfolio

piece. More importantly, it’s a fun and welcoming way to connect with others who share your

passion for games. You can find a game jam to enter that suits your skill level and time require-

ments on itch.io (https://itch.io/). They have a calendar of jams, and you can sign up for one

that suits you at https://itch.io/jams.

The other big jams are the following:

•	 Godot Wild Jam: https://godotwildjam.com/

•	 Ludum Dare: https://ldjam.com/

•	 The Global Game Jam: https://globalgamejam.org/

https://itch.io/
https://itch.io/jams
https://godotwildjam.com/
https://ldjam.com/
https://globalgamejam.org/

Where to Next?306

Game jams are just one example of how powerful it can be to learn alongside others. Whether

you’re collaborating in a team, sharing feedback, or simply seeing how others approach the same

theme, these events highlight the importance of community in game development.

In the next section, we’ll explore how getting involved in the wider game development commu-

nity, and building a professional network, can open doors, provide support, and help you grow

even further as a developer.

Community and networking
One of the most inspiring things about game development is its encouraging and supportive

community. Every game developer knows how difficult it is to make a game, and they know what

it is like to be starting out and to feel that you don’t know how to do even the simplest things.

This is why they are always willing to help others learn. Game developers also rely on each other

for gameplay testing and feedback.

Why networking matters
Networking with fellow game devs can open doors and allow you to form collaborations and

gain mentorships, job offers, and gigs. Many game developers find their first job in the industry

or meet future collaborators through the connections that they have built.

Networking also gives you visibility. By engaging with the community and networking at events

such as game jams, conferences, and meetups, you can start to become noticed. This visibility can

be crucial for landing jobs, securing funding, or gaining traction for a game release.

Where to build your network
You can build your network and connect with the community on platforms such as X, Reddit,

and Discord servers. Participating in game jams will get your name out there and may even give

you the opportunity to be part of a team.

Attending industry events and conferences, such as the Game Developers Conference (GDC),

and smaller local meetups can provide opportunities to network in person and to learn from

industry veterans.

You can also offer value to others even if you are new to game development. It’s not all about

asking for help; it is also about offering it! If someone is looking for feedback or needs someone

to play test their game, don’t hesitate to volunteer.

Chapter 12 307

People to follow
Some of the best professionals to follow on LinkedIn are the following:

•	 Sergei Vasiuk (https://www.linkedin.com/in/sergeivasjuk/)

•	 Gökhan Üzmez (https://www.linkedin.com/in/gkhnuzmez/)

•	 Jakub Remiar (https://www.linkedin.com/in/jakubremiar/)

•	 Amir Satvat (https://www.linkedin.com/in/amirsatvat/)

•	 Mayank Grover (https://www.linkedin.com/in/mayankgrover/)

•	 Mirko Minenza (https://www.linkedin.com/in/mirko-minenza/)

•	 Anton Slashcev (https://www.linkedin.com/in/aslashcev/)

By building a network and becoming part of a game development community, you can grow your

skills, learn, and foster a passion for creating games. Surrounding yourself with like-minded in-

dividuals who share your interests will allow you to find inspiration, guidance, and camaraderie,

which will make your game development journey more rewarding.

Utilizing tools and assets
When working in game development, and especially when starting out, it is so important that you

have the right tools and assets to bring your ideas to life. Game development is such a complex

process and involves many disciplines, including art, audio, programming, and design. Let’s have

a look at some tools and resources to help you with these aspects.

Tools
In this section, we’ll look at some essential tools across key areas of game development:

•	 Game engine: Our game engine of choice is Godot (https://godotengine.org/) due to

it being free and open source. It is beginner-friendly, lightweight, and perfect for both

2D and 3D projects.

•	 Graphic tools: Here are a few recommended tools for creating graphics:

•	 GIMP is a free and open source alternative to Photoshop: https://www.gimp.org/

•	 Krita is also a free and open source tool for creating digital paintings and 2D art:

https://krita.org/en/

•	 LibreSprite is a free and open source alternative to Aseprite for creating pixel art:
https://libresprite.github.io

https://www.linkedin.com/in/sergeivasjuk/
https://www.linkedin.com/in/gkhnuzmez/
https://www.linkedin.com/in/jakubremiar/
https://www.linkedin.com/in/amirsatvat/
https://www.linkedin.com/in/mayankgrover/
https://www.linkedin.com/in/mirko-minenza/
https://www.linkedin.com/in/aslashcev/
https://godotengine.org/
https://www.gimp.org/
https://krita.org/en/
https://libresprite.github.io

Where to Next?308

•	 Blender is a free and open source tool for creating 3D models and animations:

https://www.blender.org/

•	 Audio tools: Here is a list of free tools to get you started:

•	 Audacity is a free tool for recording and editing audio: https://www.audacityteam.

org/

•	 LMMS is free and open source software for composing music: https://lmms.io/

•	 Bosca Ceoil: The Blue Album is a free and open source tool for making retro game

music: https://yurisizov.itch.io/boscaceoil-blue

•	 Bfxr is a free tool for creating retro sound effects: https://www.bfxr.net/

•	 Version control: To track changes to your project and collaborate with others, Git (https://

git-scm.com/) is great. Usually, Git is paired with GitHub or GitLab.

Resources
Asset marketplaces exist that provide a variety of assets, including sprites, 3D models, music,

and sound effects. Mostly, you need to purchase assets; however, some vendors provide assets

for free. Here is a list of such vendors:

•	 itch.io has an assets section that contains free and paid resources created by indie devel-

opers: https://itch.io/game-assets

•	 Kenney offers many game assets for free, and he has a clean and simple style: https://

kenney.nl/

•	 Quaternius also offers free game assets focusing largely on low-poly 3D: https://

quaternius.com/

•	 OpenGameArt is a repository of free art and sound assets: https://opengameart.org/

•	 Freesound is a community-driven database of sound effects: https://freesound.org

•	 ZapSplat is a collection of royalty-free sound effects and music tracks: https://www.

zapsplat.com/

•	 The BBC has released an archive of sound effects for personal use: https://sound-effects.

bbcrewind.co.uk/

•	 Lospec is an amazing resource for color theory and color palettes: https://lospec.com/

•	 Pixabay and Unsplash are great resources for placeholder or background imagery:

•	 https://pixabay.com

•	 https://unsplash.com/

https://www.blender.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://lmms.io/
https://yurisizov.itch.io/boscaceoil-blue
https://www.bfxr.net/
https://git-scm.com/
https://git-scm.com/
https://itch.io/game-assets
https://kenney.nl/
https://kenney.nl/
https://quaternius.com/
https://quaternius.com/
https://opengameart.org/
https://freesound.org
https://www.zapsplat.com/
https://www.zapsplat.com/
https://sound-effects.bbcrewind.co.uk/
https://sound-effects.bbcrewind.co.uk/
https://lospec.com/
https://pixabay.com
https://unsplash.com/

Chapter 12 309

•	 BlenderKit is a good resource for free and premium 3D models that are integrated with

Blender: https://www.blenderkit.com/

•	 Google, DaFont, and Font Squirrel all provide excellent fonts for you to use in your projects:

•	 https://fonts.google.com/

•	 https://www.dafont.com/

•	 https://www.fontsquirrel.com/

When creating your first games or prototypes, it is always best to start with free resources or

create your own. This will let you learn without spending money. If you are using resources from

elsewhere, you must remember to check the license for any asset you download. This is even more

important if you plan to publish your game.

When developing, make use of placeholders or basic shapes in the early stages. This frees you to

focus on mechanics and gameplay rather than visuals.

Finally, join communities where you can share resources and advice. By using the right tools and

knowing where to find assets, you can focus on learning and building games.

Building your portfolio
A portfolio is a must-have for any aspiring game developer. This is because game development

is a fundamentally practical skill and not another theoretical discipline. Of course, it is import-

ant to understand the underlying concepts of design, programming, and art; however, the true

demonstration of a game developer’s ability is in their application of these skills.

A portfolio of your work provides evidence of your mastery of these concepts, and it showcases

your experience with game development tools, techniques, and workflows. Your ability to cre-

ate functional, engaging, and entertaining games will be clearly demonstrated. Include your

completed projects and prototypes to highlight your hands-on experience and problem-solving

skills, to show that you are familiar with industry-standard tools such as game engines and asset

creation software.

A great place to start with a game’s portfolio is itch.io (see the Participating in game jams section

for website). You can create an account on itch and host your games there for free just by signing

up. Every itch page can be completely customized, and you can follow their handy guide for doing

so here: https://itch.io/docs/creators/design.

https://www.blenderkit.com/
https://fonts.google.com/
https://www.dafont.com/
https://www.fontsquirrel.com/
https://itch.io/docs/creators/design

Where to Next?310

Game developers are always learning, and your portfolio will reflect that. You are on a lifelong

journey as a developer. Your portfolio traces that journey, proving that you have put theory into

practice and that you can turn ideas into playable realities.

Developing game ideas
Now that you have all this information, you might be keen to begin working on a game for your

portfolio. It can be daunting not knowing where to begin. Creativity is not easy, and often a prompt

is extremely helpful in lighting the spark of inspiration, which can quickly turn into wildfire!

If you are struggling to come up with a game idea for your next project, you can use a game idea

generator: https://letsmakeagame.net/game-idea-generator/.

If a random idea doesn’t appeal to you, then you can try out these tried and tested techniques for

coming up with creative starters:

•	 Mash-up hit games: Have a look at the core mechanics in at least two hit games and then

come up with a way to combine them into one mechanic in your game. This can lead to

some interesting and emergent gameplay.

•	 Simplify: Look at some complex games for inspiration and think creatively about how

you could simplify the experience into a casual game for mobile. Think about adding con-

straints such as only using a single screen or having gameplay last no longer than a minute.

•	 Polish: There are so many games released daily on various digital storefronts. This is a

goldmine of ideas as many of these games are rushed to market and are decidedly lack-

ing in polish. You don’t have to come up with a totally new idea; you need only execute

a popular idea well.

•	 Surprise people: Take an idea to ridiculous levels. Often, the key to a great game is the

unexpected and the element of surprise.

•	 Feeling is fun: Appeal to the player’s emotions. Your audience may well forget what your

game was about, but they will never forget how it made them feel. This will encourage

word-of-mouth advertising.

•	 Use new tech: With the rise of generative AI, everyone has access to a sounding board for

ideas and an infinite well of feedback and assistance. Make use of this technology.

•	 Personal inspiration: Your game will be unique and relatable if it is inspired by your own

real-life experiences.

https://letsmakeagame.net/game-idea-generator/

Chapter 12 311

•	 Reversals: Inverting familiar concepts can be a good source of interesting ideas. For ex-

ample, instead of playing as the hero saving the world, what if you played as the villain

trying to avoid being stopped? Overlord (initially released in 2007) and Untitled Goose

Game (initially released in 2019) both play with this idea—letting the player cause chaos

instead of preventing it.

•	 Reverse engineer: You can deconstruct and rebuild well-known and successful games

and add a new twist to them. Take Tetris (initially released in 1984), for example. What if

instead of fitting blocks together, your goal was to break apart a complete structure? Or

imagine a farming game such as Stardew Valley (initially released in 2016) but set on an

alien planet where you must adapt your crops to strange biomes and manage oxygen levels.

Now that you’ve explored different ways to generate unique and engaging game ideas, it’s time

to take the next step—turn those ideas into a fully planned project. In the next section, you’ll

find a practical design guide to help you shape your concept into a game you can start building.

Design guide for your next project
Once you have the idea, the following design principles can help to make your game a rewarding

experience:

•	 Curiosity should be rewarded: Players should be encouraged to explore the levels that

game developers have spent so much time planning and designing. If they do stray from

the main path, then it should be worth that time investment. Bonus story content, hidden

treasures, rare items, or power-ups will keep players exploring and make gameplay fresh.

•	 Clear separation between win and lose conditions: Do not confuse the player with

ambiguous win-and-lose conditions. Players need accurate and immediate feedback on

why they have failed and how they can succeed. Visual cues can help a lot here. Using

things such as progress bars, health bars, danger symbols, and color references will give

the player confidence.

•	 Consistency is key: Teach the players the rules of your game and then stick to those rules.

Patterns build trust for players and create a consistent game world that the player will

enjoy exploring.

•	 Show don’t tell: A tutorial level can be extremely dull, and since it’s often the first level

a player experiences, it has the potential to put someone off the game entirely. The best

tutorials subtly guide the player to discover the solutions and gameplay mechanics on

their own, without breaking immersion.

Where to Next?312

One excellent example of this is Portal (first released in 2007) by Valve, which introduces

each new mechanic through cleverly designed puzzles that gradually increase in com-

plexity. The player learns by doing, not by reading instructions. This kind of interactive

learning keeps players engaged and makes the tutorial feel like a natural part of the game.

•	 Fair is fun: Humans have a strong sense of justice, and they want things to be fair. Don’t

increase the difficulty by allowing the enemies to break the rules that apply to the player.

By this, I mean enemies that can teleport and defy the in-game physics—basically, cheat.

•	 Avoid negative reinforcement: If a player has worked hard to earn a reward, don’t take it

away from them. If something is taken away from the player without their input, it can feel

unfair. Allow the player to give up an item by choice, usually through selling or swapping.

•	 Clear objectives: One of the most frustrating things for a player is not knowing what to

do next. Even in open-world exploration games, the player should always have a clear

sense of what they can do next. This can be a completely linear path or a choice between

multiple goals. The journey can be challenging, but the objective must be obvious.

A great example of this is The Legend of Zelda: Breath of the Wild (initially released in 2017).

While the game gives players the freedom to explore, it consistently provides gentle guid-

ance through environmental cues, map markers, and subtle NPC dialogue to help players

orient themselves and choose what to tackle next.

•	 A foundation of fun: Fun is a nebulous term. Essentially, what we mean when a game

is fun is that the player is always incentivized to continue playing. The core gameplay

must be fun; it must incentivize the player to continue the journey because if not, then

no amount of rewards, content, or story will matter.

•	 Player knows best: Listen to feedback and implement changes and suggestions early on.

Are players bored, frustrated, or confused? Players will point out the real issues, things

that prevent them from wanting to continue playing. Player feedback can save your game.

•	 Respect the player: If you offer the player a choice, then you must honor their decision.

Do not provide false choices to force the player into a correct decision. This can ruin im-

mersion. Your game’s outcomes should match the player’s expectations.

Now that you have a solid foundation for designing your game, you are ready to explore specific

areas of game development. The following resources have been curated to help you continue

learning and growing as a developer.

Chapter 12 313

Further reading
•	 Vanhove, S. (2024). Learning GDScript by Developing a Game with Godot 4: A fun introduc-

tion to programming in GDScript 2.0 and game development using the Godot Engine. Packt

Publishing Ltd. (https://www.packtpub.com/en-in/product/learning-gdscript-by-
developing-a-game-with-godot-4-9781804616987?srsltid=AfmBOorONDSKsGBPgQdez

H_3z6R8z1cQn57-bahYjmhfNzjd4JT3EP3t)

“Sander Vanhove is a seasoned game developer with over 20 games to his credit. This book will

serve as your entry point into game development, showing you how to leverage the powerful

features of the open source, versatile GDScript 2.0 to develop your ideas, from simple platformers

to complex RPGs.

Whether you’re an aspiring game developer, a hobbyist seeking a creative outlet, or simply some-

one intrigued by the world of game programming, this book will guide you through the intricacies

of the Godot 4 game engine. Starting with a primer on the fundamentals of programming, you’ll

cover everything from data to logic, while familiarizing yourself with Godot’s built-in tools such

as the physics engine, navigation, and cameras. As you progress, you’ll unlock deeper insights

into more advanced tools that will take your programming to the next level. Aided by easy-to-

follow step-by-step tutorials, examples, exercises, and experiments, you’ll seamlessly integrate

this newfound knowledge to create a vampire survivor-like game from scratch.

By the end of this book, you’ll have become proficient in leveraging the Godot 4 game engine to

bring your gaming visions to life.”

•	 Campos, H. (2025). Game Development Patterns with Godot 4: Create Resilient Game Systems

Using Industry-Proven Solutions in Godot. Packt Publishing Ltd. (https://www.packtpub.
com/en-us/product/game-development-patterns-with-godot-4-9781835880296?srs

ltid=AfmBOoo26F6O5FFeCa5HioxsnGU9jrLlGrs8DHGUhT6ho3YN5r77i6Gj)

“Henrique “Ludonaut” Campos is an indie game developer and game designer working in the

industry for years. He began as a university teacher in 2015 in the computer graphics and ar-

tificial intelligence chairs and worked in the GDQuest team from 2018 to 2022. Henrique is

also an independent consultant for studios and schools. Under the alias of Ludonaut, Henrique

creates game development content on his YouTube channel, making games, assets, e-books, and

courses that can be found on his itch.io profile. As the author of The Essential Guide to Creating

Multiplayer Games with Godot 4.0, Henrique paved the way for Godot users to make reusable

and scalable code libraries for Godot Engine projects.

https://www.packtpub.com/en-in/product/learning-gdscript-by-developing-a-game-with-godot-4-9781804616987?srsltid=AfmBOorONDSKsGBPgQdezH_3z6R8z1cQn57-bahYjmhfNzjd4JT3EP3t
https://www.packtpub.com/en-in/product/learning-gdscript-by-developing-a-game-with-godot-4-9781804616987?srsltid=AfmBOorONDSKsGBPgQdezH_3z6R8z1cQn57-bahYjmhfNzjd4JT3EP3t
https://www.packtpub.com/en-in/product/learning-gdscript-by-developing-a-game-with-godot-4-9781804616987?srsltid=AfmBOorONDSKsGBPgQdezH_3z6R8z1cQn57-bahYjmhfNzjd4JT3EP3t
https://www.packtpub.com/en-us/product/game-development-patterns-with-godot-4-9781835880296?srsltid=AfmBOoo26F6O5FFeCa5HioxsnGU9jrLlGrs8DHGUhT6ho3YN5r77i6Gj
https://www.packtpub.com/en-us/product/game-development-patterns-with-godot-4-9781835880296?srsltid=AfmBOoo26F6O5FFeCa5HioxsnGU9jrLlGrs8DHGUhT6ho3YN5r77i6Gj
https://www.packtpub.com/en-us/product/game-development-patterns-with-godot-4-9781835880296?srsltid=AfmBOoo26F6O5FFeCa5HioxsnGU9jrLlGrs8DHGUhT6ho3YN5r77i6Gj

Where to Next?314

If you are a game developer, game designer, technical artist, or solo developer with programming

experience in Godot Engine and the GDScript programming language, this book is for you. It is

perfect for professionals looking to create solid, reusable, and reliable architecture that can adapt

and grow with their creative vision.”

•	 Bradfield, C. (2023). Godot 4 Game Development projects: Build five cross-platform 2D

and 3D games using one of the most powerful open source game engines. Packt Publishing

Ltd. (https://www.packtpub.com/en-cy/product/godot-4-game-development-

projects-9781804610404)

“Chris Bradfield has worked in the internet technology space for over 25 years. He has worked

in the online gaming space for several MMO and social gaming publishers in South Korea and

the United States. In his game industry career, he served as a game designer, developer, product

manager, and team leader. In 2012, he discovered a love for teaching and founded KidsCanCode

to provide programming instruction and curriculum to young students. He is a member of the

Godot Engine documentation team and works to provide learning resources for game develop-

ment students around the world.

This book is for game developers at all levels, from beginners seeking an introduction to experienced

programmers aiming to delve into the intricacies of Godot Engine 4.0. It is a valuable resource

for newcomers and a treasure trove of insights for experienced developers. Prior programming

experience is a prerequisite.”

•	 Obuz, K. (2022). Game Development with Blender and Godot: Leverage the combined power

of Blender and Godot for building a point-and-click adventure game. Packt Publishing Ltd.

(https://www.packtpub.com/en-us/product/game-development-with-blender-and-

godot-9781801816021)

“Kumsal Obuz is a self-taught but veteran web developer with more than 15 years of experience in

two different countries, leading teams and projects of various sizes. After several years of preparation

and transition, he started his own game studio in August 2020. He launched a small puzzle strategy

game at the end of 2020 and is currently working on an ambitious farming simulation game. He

also likes to mentor (perhaps due to his genetic background, since both of his parents are teachers!).

Because of his love for Godot, he founded and still organizes the Godot Toronto Meetup group.

This book is for game developers who are looking to make the transition from 2D to 3D games.

Readers should have a basic understanding of Godot, being able to navigate the UI, understand

the Inspector panel, create scenes, add scripts to game objects, and so on. Previous experience

with Blender is helpful but not required.”

https://www.packtpub.com/en-cy/product/godot-4-game-development-projects-9781804610404
https://www.packtpub.com/en-cy/product/godot-4-game-development-projects-9781804610404
https://www.packtpub.com/en-us/product/game-development-with-blender-and-godot-9781801816021
https://www.packtpub.com/en-us/product/game-development-with-blender-and-godot-9781801816021

Chapter 12 315

•	 Johnson, J. (2023). Godot 4 Game Development Cookbook: Over 50 solid recipes for build-

ing high-quality 2D and 3D games with improved performance. Packt Publishing Ltd.

(https://www.packtpub.com/en-mx/product/godot-4-game-development-cookbook-
9781838826079?srsltid=AfmBOorXABpX5GKKuUDe8VzCkqBkVdbBV6aClIAg1A0VunYHftf

rI_Nq)

“Jeff Johnson is a game developer who started using Unity 4.0 in 2014 and released a couple of

games on itch.io. In 2018, he created 999 Dev Studio. Toward the end of developing Escape From

51, he changed engines to Godot 3.0.2 and ported almost the whole game to Godot from Unity.

He released Escape From 51 on itch.io as well as some mobile games on Google Play.

Godot 4 Game Development Cookbook is for seasoned game developers who want to acquire

skills in creating games using a contemporary game engine. It is an invaluable resource for indie

game developers and Godot developers who are familiar with Godot 3 and have some level of

expertise in maneuvering the interface.”

Summary
You’ve reached the end of Godot 4 for Beginners, but your journey as a game developer is just

beginning. In this final chapter, you explored the next steps you can take to continue growing

your skills, from educational resources and communities to asset marketplaces and game jams.

You saw just how important networking, participating in industry events, and building a strong

portfolio to showcase your work are.

Game development is a continuous learning process, and by engaging with these resources, you

can refine your craft, stay inspired, and connect with like-minded creators.

It has been a pleasure for me to provide some stepping stones for you on your game dev journey.

Keep experimenting, keep creating, and, most importantly, keep making games!

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/godot-4-game-dev

https://www.packtpub.com/en-mx/product/godot-4-game-development-cookbook-9781838826079?srsltid=AfmBOorXABpX5GKKuUDe8VzCkqBkVdbBV6aClIAg1A0VunYHftfrI_Nq
https://www.packtpub.com/en-mx/product/godot-4-game-development-cookbook-9781838826079?srsltid=AfmBOorXABpX5GKKuUDe8VzCkqBkVdbBV6aClIAg1A0VunYHftfrI_Nq
https://www.packtpub.com/en-mx/product/godot-4-game-development-cookbook-9781838826079?srsltid=AfmBOorXABpX5GKKuUDe8VzCkqBkVdbBV6aClIAg1A0VunYHftfrI_Nq
https://packt.link/godot-4-game-dev

13
Unlock Your Book’s Exclusive
Benefits

Your copy of this book comes with the following exclusive benefits:

 Next-gen Packt Reader

 AI assistant (beta)

 DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1
Have your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: Did you buy this book directly from Packt? You don’t need an invoice. After

completing Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help

Unlock Your Book’s Exclusive Benefits318

Step 2
Scan this QR code or go to packtpub.com/unlock.

On the page that opens (which will look similar to Figure 13.1 if you’re on desktop), search for

this book by name. Make sure you select the correct edition.

Figure 13.1 – Packt unlock landing page on desktop

Step 3
Once you’ve selected your book, sign in to your Packt account or create a new one for free. Once

you’re logged in, upload your invoice. It can be in PDF, PNG, or JPG format and must be no larger

than 10 MB. Follow the rest of the instructions on the screen to complete the process.

packtpub.com/unlock

Chapter 13 319

Need help?
If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your

invoices and more. The following QR code will take you to the help

page directly:

Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
mailto:customercare@packt.com

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
www.packtpub.com

Other Books You May Enjoy 323

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Game Development Patterns with Godot 4

Henrique Campos

ISBN: 978-1-83588-028-9

•	 Create reusable and scalable code that follows SOLID principles

•	 Identify common game development issues and apply industry-standard solutions

•	 Understand feature requests and how to turn them into concrete solutions leveraging

design patterns

•	 Analyze game development pathologies to figure out underlying issues

•	 Architect reliable systems that are understandable, intuitive, and scalable

•	 Structure professional, collaborative game systems that are easy to maintain

https://www.amazon.com/Game-Development-Patterns-Godot-industry-proven/dp/B0DCZG1V55

Other Books You May Enjoy

Learning GDScript by Developing a Game with Godot 4

Sander Vanhove

ISBN: 978-1-80461-698-7

•	 Develop your GDScript 2.0 programming skills from basic to advanced, emphasizing

code cleanliness

•	 Harness Godot 4’s integrated physics engine to control and manipulate in-game objects

•	 Design a vibrant and immersive game world by seamlessly integrating a diverse array

of assets

•	 Master the art of processing input from various sources for enhanced interactivity

•	 Extend the reach of your game by learning how to export it to multiple platforms

•	 Incorporate simple multiplayer functionality for a dynamic gaming experience

https://www.amazon.com/dp/1804616982/

Other Books You May Enjoy 325

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You can make a general applica-

tion, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Godot 4 for Beginners, we’d love to hear your thoughts! If you purchased the

book from Amazon, please click here to go straight to the Amazon review page for this book and

share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packt.com
https://packt.link/r/1836203098

Index

Symbols
2D Mini-Game

background, adding to level 136-138
collisions, detecting 142, 143
level, building with TileMap 132-136
physics layer 146, 147
player animations, setting up 139-141
player, controlling 136
player, creating 136
TileMap collisions 143, 144
tiles, painting 148, 149

3D character
building 192-196

3D dimension
working 192

3D Mini-Game
audio, adding to level 242-245
background color, setting 238
Ball scene, creating 231, 232
Ball script, writing 233
Cannon scene, creating 230, 231
Cannon script, writing 233-235
Flag scene, creating 235, 236
Gem scene, creating 224, 225
Gem script, adding 225-229
level, completing 235

level, polishing 237
particle effects, adding 238
scenes, modifying 236, 237
sine function, using 246, 247
smoke scene, creating 238-242

3D objects
creating 56-58
material, applying 65, 66
material, creating 62-65

3D scene
moving around 59-61

A
albedo 64
animate function 163, 165, 260
argument 105
assignment operator 93
Audacity

URL 308
audio effect

adding 270, 271
audio tools 308

Audacity 308
Bfxr 308
Bosca Ceoil 308
LMMS 308

Index328

B
Ball scene

creating 231, 232
Ball script

writing 233
BBC

URL 308
Bfxr

URL 308
Blender

URL 308
BlenderKit 309
blog recommendations

Deconstructor of Fun 304
Game Design Skills 304
Game Developer 304

Bosca Ceoil
URL 308

built-in method 50

C
camera controller

implementing 215-219
Cannon scene

creating 230, 231
Cannon script

writing 233-235
CharacterBody2D template

adding, for Player script 149-153
Character Controller script

working with 203, 204
clean code concept 154, 155
CodeDecks

URL 281

collectible items 166
strawberry scene 166-170

collectibles 224
collision layers 144
collision masks 144
community 306
comparison operators 101, 102

equality 101
greater than 101
greater than or equal to 101
less than 101
less than or equal to 102
not equals 102

confetti cannon effect
creating 262-270
scripting 268

constants 152
coordinates 118, 119
Creative Commons Zero (CC0) 158, 192
cross product 129
custom functions

using 104

D
DaFont

URL 309
delta 25, 27
design principles 311, 312
directional light 73, 74
direction vector 117
dot notation 121
dot product 129
double-jump animation 159, 160
double-jump function 160, 161

Index 329

E
educational resources

blogs 303, 304
utilizing 302
YouTube 302, 303

Entertainment Software Rating Board
(ESRB) 284

exported variables 204

F
fall animation 158
fire() function 268
Flag scene

creating 235, 236
Font Squirrel

URL 309
foundational techniques, game juice

audio feedback 251
visual feedback 251

FreeFont
URL 309

Freesound
URL 308

friction 161
functions 89, 208

exploring 208
game events and feedback,

handling 212-215
input map, creating 209, 210

_physics_process(delta) 91
player controls and actions,

implementing 211
_process 90
_process(delta) 90

_ready 89, 90
return values 107, 108

G
game design 277

documentation, significance 279, 280
examples 278
foundations 278, 279

game design document (GDD) 279
anchor points 285
assets 285
audience 284
elements, describing 286
expanded concept paragraph and USP 283
exploring 282
genre 284
guiding principles 280-282
monetization 286
platforms 285
player’s experience 284
project, status 282
review competition 285
statement of concept 283
team 282
title 282

game design document (GDD), elements
archive 298
audio and visual style 290
current concerns and considerations 298
detailed asset list 295
details, implementation 299
game objects 294
player progression and objectives 286, 287
playtesting 297, 298
prototypes 296
software requirements 292, 293
systems and features 291, 292

Index330

user interface 288
world and background 287, 288

Game Developers Conference (GDC) 306
game development

practice opportunities, exploring 304
Game Docs

reference link 282
game engine 6, 307
game ideas

developing 310, 311
game jams 305

Godot Wild Jam 306
Ludum Dare 306
participating in 305
The Global Game Jam 306

game juice 250
examples 250
foundational techniques 251

game loop 90
Gamescrye

reference link 280
GDScript 56, 84
Gem scene

creating 224, 225
Gem script

adding 225-229
GIMP

URL 307
Git

URL 308
Godot 6

features 7
URL 8

Godot 4
setting up 8-11

Godot 4.0 3
Godot Project Manager 12
graphic tools 307

Blender 308
GIMP 307
Krita 307
LibreSprite 307

gray boxing 297
grouping 203

H
HacknPlan

URL 281
handle_controls function 211
handle_respawn() function

grounded state tracking 214
landing animation 214
resetting scale 214
scene reload 214

heads-up display (HUD) 249
health bar HUD

heart-based health system,
developing 252-255

HUD, updating in level script 255-257
implementing 251, 252

helper variables 159, 160
hit animation

adding 257-262
hook 283

I
idle animation 158
input map 209

creating 209, 210
instance 38

Index 331

irregular collision shapes
handling 199-201

itch.io
URL 309

J
jump animation 158

K
Kenney

URL 308
Krita

URL 307

L
LEGO model 34
level completion

implementing 183-186
level component

creating 197
grass platform, creating 197-199

level design 196
creating 196
irregular collision shapes, handling 199-201
level component, creating 197
level layout, creating 201, 202

level layout
creating 201, 202
level scene, organizing 202

LibreSprite
URL 307

lighting 72
directional light 73, 74
omni light 74-78
spotlight 78-80

linear algebra 129
linear interpolation 213
LMMS

URL 308
Lospec

URL 308

M
Material Maker

reference link 65
materials 62

applying 65, 66
creating, for object 62-65
replicating 67
shiny metal material 68, 69
texture, adding 71
transparent pink capsule 70

mathematical operators
addition 98
division 98, 99
multiplication 98, 99
subtraction 98, 99

mesh 59
MeshInstance3D 59
minimum viable product (MVP) 281
movement 122
mushroom stomping 180-183

N
networking 306

professionals 307
with community 306

nodes 30, 34
working 30

non-player characters (NPCs) 294

Index332

normalized vector 117, 125, 129
Notion

URL 281

O
Obsidian

URL 281
obstacles 230
omni light 74-78
OneNote

URL 281
OpenGameArt

URL 308
operators 98

comparison 101, 102
mathematical 98, 99
order of operations 100

P
parameter 105
particle effects 238
PascalCase 96
pass-through platforms

setting up 165, 166
patrolling enemy

adding 175-179
PEMDAS 100
Pixabay 308

Pixel Adventure 1
reference link 158

Pixel Adventure 2
reference link 158

player animations
controlling, with code 158, 159

player input
player reactions, scripting to 49
reacting to 39-48

player reactions, to player input
input handling 50-52
label, hiding 49

Player script
CharacterBody2D template,

adding for 149-153
point 114
portfolio 309

building 309
positioning 122
position vectors 118
project

additional scene, adding 38
creating 12-22
editing 31-33
Label node, removing from

Main scene 35-37

Q
Quaternius

URL 308

R
RayCast2D 179

resources 7, 34, 308, 309
return values 106, 107
Roobyx

reference link 280
run animation 158

Index 333

S
scalar 125
scene 31, 34

dynamic, making 23, 24
SCREAMING_SNAKE_CASE 96
scripts 31

creating 84-88
shortcut operator 99
sine function

using 246, 247
smoke scene

creating 238-242
snake_case 96
sound effect

adding 270, 271
implementing 272-274

spotlight 78-80
sprite 39
sprite sheet 139, 167
StaticBody3D node 197

using, for stationary elements 197
strawberry scene 166-170
Strawberry script

implementing 170-173
String 97
stub testing 181

T
tests

running 220
TileMap 157

level, building 132-136

tools 307
audio tools 308
game engine 307
graphic tools 307
version control 308

U
unique selling points (USPs) 283
Unsplash 308
user interface (UI) 251

V
variables 93

creating 93, 94
data types 95
naming conventions 96, 97
Player script, linking with camera 205-207
reference variables method,

adding 207, 208
using 204

variable scope 101
vector addition 123, 124
vector length 127
vector multiplication 125, 126
vectors 114, 115

distance, calculating to object 128
normalization 128
using 119-122

vector subtraction 124

velocity 116
velocity vector 116

Index334

W
wall-slide animation 159, 160
wall-slide function 161, 162

conditions, checking 162
download speed, limiting 162, 163
input, detecting 162
resetting 162

Y
YouTube channels

GameDev Journey 303
GDQuest 302
Godot Tutorials 303
Heartbeast 303

Z
ZapSplat

URL 308

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1: Learning How the Godot Engine Works
	Chapter 1: Let’s Get Godot-ing!
	Getting the most out of this book – get to know your free benefits
	Next-gen reader
	Interactive AI assistant (beta)
	DRM-free PDF or ePub version

	Technical requirements
	What is Godot?
	What makes Godot so special?

	Setting up Godot 4
	Creating a new project
	Making the scene dynamic
	Delta

	Continuing the bouncing label project

	Summary

	Chapter 2: Exploring the Godot Engine Interface
	Technical requirements
	Important terms
	Editing an existing Godot project
	Creating an additional scene
	Reacting to player input
	Scripting player reactions to input
	Hiding the label until the user provides input
	Input handling

	Summary

	Chapter 3: Introduction to 3D
	Technical requirements
	Creating 3D objects
	Moving around the scene

	Creating a material for your object
	Creating a material
	Applying a material
	Challenge yourself

	Creating lighting for the scene
	Directional light
	Omni light
	Spotlight

	Summary

	Chapter 4: Scripting with GDScript
	Technical requirements
	Understanding GDScript
	Creating scripts
	Understanding functions
	Understanding the game loop
	_ready()
	_process(delta)
	_physics_process(delta)

	Understanding variables
	Creating a variable
	Data types
	Naming conventions

	Understanding operators
	Order of operations
	Practice exercise

	Relational and comparison operators
	Practice exercise

	Using custom functions
	Arguments and parameters or function inputs
	Functions can return output

	Summary

	Part 2: Working with the Godot Engine
	Chapter 5: Understanding Vectors
	Technical requirements
	What are vectors?
	Coordinates in Godot

	Using vectors in Godot
	Movement and positioning
	Vector addition
	Vector subtraction
	Vector multiplication

	Vector length
	Distance
	Normalization

	Summary

	Chapter 6: Creating a 2D Mini-Game in Godot – Part 1
	Technical requirements
	Building the level with a TileMap
	Creating and controlling the player
	Adding the background
	Setting up the player animations
	Detecting collisions
	TileMap collisions
	Collision layers and collision masks
	Painting the tiles

	Adding the CharacterBody2D template for the Player script
	Cleaning the code
	Summary

	Chapter 7: Creating a 2D Mini-Game in Godot – Part 2
	Technical requirements
	Controlling player animations with code
	Helper variables

	Wall-sliding and double-jumping mechanics
	Double-jump function
	Wall-slide function
	Checking conditions
	Detecting input
	Resetting the wall slide
	Limiting downward speed

	Animate function

	Falling through platforms
	Adding collectible items
	Strawberry scene (our collectible item)
	Implementing the Strawberry script

	Adding a patrolling enemy
	Mushroom stomping

	Implementing level completion
	Summary

	Part 3: Building and Beyond – Your Game Development Journey
	Chapter 8: Creating a 3D Mini-Game in Godot – Part 1
	Technical requirements
	Working in 3D: a new dimension in Godot
	Building a 3D character
	Creating a level design
	Creating a level component
	Example: creating a grass platform

	Handling irregular collision shapes
	Creating the level layout
	Organizing the level scene

	Working with a Character Controller script
	Using variables
	Linking the Player script with the camera
	Alternative method for adding reference variables

	Exploring functions
	Creating an input map
	Implementing player controls and actions
	Handling game events and feedback

	Implementing a camera controller
	Running tests
	Summary

	Chapter 9: Creating a 3D Mini-Game in Godot – Part 2
	Technical requirements
	Exploring collectibles
	Creating the Gem scene
	Adding the Gem script

	Introducing obstacles
	Creating the Cannon scene
	Creating the Ball scene
	Writing the Ball script
	Writing the Cannon script

	Completing our level
	Creating the Flag scene
	Changing scenes

	Polishing our level
	Setting the background color
	Adding particle effects
	Creating the smoke scene
	Adding audio to our level
	Using the sine function

	Summary

	Chapter 10: Adding Game Juice
	Technical requirements
	Understanding game juice
	Foundations of juicing: animation and audio
	Visual feedback (animation and particle effects)
	Audio feedback (music and sound effects)

	Implementing a health bar HUD
	Developing a heart-based health system
	Updating the HUD in the Level script

	Adding a hit animation
	Creating a confetti cannon effect
	Scripting the confetti cannon

	Adding audio and sound effects
	Implementing a sound effect

	Summary

	Chapter 11: Understanding Game Design
	Technical requirements
	Understanding the foundations of game design
	Introducing the game design document
	Why is documentation necessary for your game design?
	Understanding the guiding principles for the GDD
	Think visually
	Keep it brief and clear
	Stay organized
	Learn by example

	Exploring the Game Design Document
	Title: what will you call your game?
	Team: who will build or develop the game?
	Status: what is the status of the project?
	Statement of concept: what is your game about in one sentence?
	Expanded concept paragraph and USP: what makes your game unique, and how can you describe it in more detail?
	Genre: what type of game are you making?
	Audience: who is this game for?
	Experience: what should the player feel or experience while playing?
	Anchor points: what are the core ideas, inspirations, or reference points?
	Platform: which platforms will the game be released on?
	Review competition: what similar games exist, and how will yours stand out?
	Assets: what art, sound, and other resources will your game need?
	Monetization: how will the game generate revenue, if at all?

	Describing game elements of the GDD in detail
	Player progression and objectives
	Game world and background
	User interface
	Audio and visual style
	Game systems and features
	Software requirements
	Game objects
	Detailed asset list
	Prototypes
	Playtesting
	Archive
	Current concerns and considerations
	Implementation details

	Summary

	Chapter 12: Where to Next?
	Technical requirements
	Utilizing educational resources
	YouTube
	Blogs

	Exploring opportunities for practice
	Participating in game jams

	Community and networking
	Why networking matters
	Where to build your network
	People to follow

	Utilizing tools and assets
	Tools
	Resources

	Building your portfolio
	Developing game ideas
	Design guide for your next project
	Further reading
	Summary

	Chapter 13: Unlock Your Book’s Exclusive Benefits
	How to unlock these benefits in three easy steps
	Step 1
	Step 2
	Step 3
	Need help?

	Other Books You May Enjoy
	Index

